6 resultados para hematoxylin and eosin staining
em DigitalCommons@The Texas Medical Center
Resumo:
INTRODUCTION: SPARC is a matricellular protein, which, along with other extracellular matrix components including collagens, is commonly over-expressed in fibrotic diseases. The purpose of this study was to examine whether inhibition of SPARC can regulate collagen expression in vitro and in vivo, and subsequently attenuate fibrotic stimulation by bleomycin in mouse skin and lungs. METHODS: In in vitro studies, skin fibroblasts obtained from a Tgfbr1 knock-in mouse (TBR1CA; Cre-ER) were transfected with SPARC siRNA. Gene and protein expressions of the Col1a2 and the Ctgf were examined by real-time RT-PCR and Western blotting, respectively. In in vivo studies, C57BL/6 mice were induced for skin and lung fibrosis by bleomycin and followed by SPARC siRNA treatment through subcutaneous injection and intratracheal instillation, respectively. The pathological changes of skin and lungs were assessed by hematoxylin and eosin and Masson's trichrome stains. The expression changes of collagen in the tissues were assessed by real-time RT-PCR and non-crosslinked fibrillar collagen content assays. RESULTS: SPARC siRNA significantly reduced gene and protein expression of collagen type 1 in fibroblasts obtained from the TBR1CA; Cre-ER mouse that was induced for constitutively active TGF-beta receptor I. Skin and lung fibrosis induced by bleomycin was markedly reduced by treatment with SPARC siRNA. The anti-fibrotic effect of SPARC siRNA in vivo was accompanied by an inhibition of Ctgf expression in these same tissues. CONCLUSIONS: Specific inhibition of SPARC effectively reduced fibrotic changes in vitro and in vivo. SPARC inhibition may represent a potential therapeutic approach to fibrotic diseases.
Resumo:
Morphogenesis is the process by which the 3-dimensional structure of the developing embryo takes shape. We are studying xlcaax-1, a gene whose product can be used as a molecular marker for several morphogenetic events. We report here the cellular and subcellular localization of the xlcaax-1 protein during development of Xenopus laevis. Whole mount immunocytochemistry and immunoperoxidase staining of tissue sections showed that during development the xlcaax-1 protein accumulation was coincident with the differentiation of the epidermis, pronephros and mesonephros. In the pronephros and mesonephros the xlcaax-1 protein was localized to the basolateral membrane of differentiated tubule epithelial cells. Thus, the xlcaax-1 protein served as a marker for tubule formation and polarization during Xenopus kidney development. Xlcaax-1 may also be used as a marker for the functional differentiation of the epidermis and the epidermally derived portions of the lens and some cranial nerves. The xlcaax-1 protein was most abundant in kidney and immunogold EM analysis showed that the xlcaax-1 protein was highly enriched in the basal infoldings of the basolateral membrane of the epithelial cells in adult kidney distal tubules. The xlcaax-1 protein was also localized in other ion transporting epithelia. The localization pattern and preliminary functional assays of xlcaax-1 suggest that the protein may function in association with an ion transport channel or pump.^ Cell migration and cell-cell interactions play important roles in numerous processes during morphogenesis. One of these is the formation of the pronephric (wolffian) duct (PD), which connects the pronephros to the cloaca. It is currently accepted that in most amphibians the pronephric duct is formed by active migration of the pronephric duct rudiment (PDR) cells along a pre-determined pathway. However, there is evidence that in Xenopus, the PD may be formed entirely by in situ segregation of cells out of the lateral mesoderm. In this study, we showed, using PDR ablation and X. laevis - X. borealis chimeras, that PD elongation in Xenopus required both active cell migration and an induced recruitment of cells from the posterior lateral plate mesoderm. We also showed that PDR cell migration was limited to only a few stages during development and that this temporal control is due, at least in part, to changes in the competence of the PD pathway to support cell migration. In addition, our data suggested that an alkaline phosphatase (APase) adhesion gradient may be involved in determining this competence. ^
Resumo:
Periodontal disease is the major cause of tooth loss in man. The initial histological picture of the inflamed gingiva is characteristic of local inflammatory reaction involving polymorphonuclear leukocytes, vasculitis and localized tissue loss. Subsequent clinical stages of periodontal disease (mild gingivitis) show histological evidence of the involvement of the immune response with initial accumulation of macrophages, and lymphocytes devoid of surface staining immunoglobulins (presumably T cells). As the disease progresses, a predominance of surface and cytoplasmic staining lymphocytes and plasma cells are seen (severe gingivitis and periodontitis). Whether the occurrence of the immunoglobulin positive lymphocytes and the concurrent loss of collagen and resorption of alveolar bone seen in periodontitis is indicative of a direct cause and effect relationship has been a controversy.^ The majority of investigations in the periodontal field have involved the use of peripheral blood lymphocytes or serum. Blastogenic responses of peripheral blood lymphocytes and serum antibody titers from periodontal patients to a variety of oral bacteria have not shown any correlation between response and the severity of disease. The need to study the local immune response in inflamed gingiva is apparent. Since there are no baseline studies on the functional capabilities of the lymphoid cells present in gingiva from periodontitis patients, an in depth study involving the role of the immunoglobulin positive lymphocytes was investigated.^ Inflamed gingiva from four clinically defined periodontal disease states (mild gingivitis, severe gingivitis, periodontitis and severe periodontitis) were placed in gingival organ cultures. Class specific immunoglobulins were quantitated in gingival organ culture supernatants using an indirect sandwich technique. A significant difference in mean levels of IgA and IgG was seen between mild gingivitis and periodontitis (P < .00l, P = .001), as well as in IgG levels between periodontitis and severe periodontitis (P = .001). The predominance of IgG in gingival organ culture supernatants and the statistically significant findings that the overall mean levels of IgG between mild gingivitis and periodontitis (P = .014) and between severe periodontitis and periodontitis (P = .001) suggested a possible indicator of periodontal disease. The presence of IgG in gingival organ culture supernatants was shown to be a product of actively secreting plasma cells. The incorporation of radiolabelled amino acids into IgG was noted over a seven-day period with a peak response at day 4-5. The inhibition of IgG synthesis by cyclohexamide confirmed the contention that IgG was a product of de novo synthesis and not serum derived.^ The specificity of immunoglobulins derived from gingival organ cultures were studied using a whole bacterial agglutination test. Oral bacteria frequently cultured from periodontal patients were assessed for their ability to be agglutinated by gingival organ culture supernatants. A positive correlation of antibody titer and severity of disease was seen with five strains of Actinomyces viscosus, two of Actinomyces naeslundii and one Actinomyces israelii. The agglutination of bacteria was shown to be due to the specific interaction of immunoglobulin and cell-wall antigen. ^
Resumo:
This study (1) established comedogenicity dose response curves for the pure compounds of 3,3$\sp\prime$,4,4$\sp\prime$-tetrachloroazobenzene (TCAB) and 3,3$\sp\prime$,4,4$\sp\prime$-tetrachloroazoxybenzene (TCAOB) individually and as a couple-compound using a rabbit ear model; (2) used a rabbit ear model to establish comedogenicity potential for TCAB and TCAOB as they existed in a given industrial herbicide manufacture process; (3) evaluated actual environmental contamination in a herbicide industrial setting by air monitoring and wipe sampling; (4) biologically monitored potentially exposed workers for alterations in follicular orifice size as an index of actual exposure to chloracnegenic compounds; and (5) biologically monitored potentially exposed workers for changes in weight, cholesterol, triglycerides and blood sugar.^ A silastic monomer mold (an objective measure) was used to measure change in follicular orifice size over time. This required taking impressions of (1) skin of the forehead and right and left malar crescents of workers and (2) the skin of the external ear of the rabbit. Molds were stained using a solution of hematoxylin and digitized using a Nikon UFX microscope (magnification 300 X), a drawing tube and a digitizing tablet attached to an IBM Personal Computer. Comedogenicity assays were used to establish dose-response curves for TCAB, TCAOB and the couple-compound TCAB + TCAOB.^ No evidence of chloracne or toxicity was observed in any of the workers. Nor, was there a statistically significant increase in size of follicular orifice means measured over time. This was attributed to extensive personal and environmental hygiene programs along with teaching the workers about chloracne, its cause and its prevention. These programs may have been the greatest factor in preventing the development of chloracne in this group of workers. Monitoring of the plant environment showed relatively high concentrations of the couple-compound (TCAB + TCAOB). Comedogenicity assays showed a linear dose-response relationship over time for TCAB, TCAOB and the couple-compound. An antagonistic action was found for the TCAB/TCAOB of the couple-compound; such action may provide some protection to workers in this type of setting. It is speculated that the observed antagonistic action may be due to the difference in binding affinities of TCAB/TCAOB for receptor sites. ^
Resumo:
STATEMENT OF PROBLEM: Long-term fluoride application on the teeth of patients receiving radiation therapy for head and neck tumors results in excessive staining and roughening of ceramic restorations. PURPOSE: The purpose of this in vitro study was to compare the staining effects of 2 fluoride treatments on ceramic disks by simulating 1 year of clinical exposure at 10 minutes per day. In addition, 2 different surface preparations were tested. MATERIAL AND METHODS: Eighty ceramic disks (IPS Empress), 20 x 2 mm, were fabricated. Half of the disks were glazed, and the remaining disks were polished. All disks were brushed for 3 minutes with a soft-bristle power toothbrush and mild dentifrice (baseline) and were immersed in 1 of the 2 fluoride products (0.4% SnF(2), Gel-Kam Gel, or 1.1% NaF, Prevident 5000) for 10 days (n=20). Means and standard deviations of color change (Delta E), surface roughness (Ra, um), and surface gloss (GU) of the ceramic material were measured with a reflection spectrophotometer, a profilometer, and a gloss meter, respectively, at baseline and after fluoride treatment. Two- and 3-way ANOVA (alpha=.05), with surface preparation (polished vs. glazed) and fluoride treatment (0.4% SnF(2) or 1.1% NaF) as independent variables and condition (baseline vs. after fluoride treatment) as a repeated measure, was used to analyze the data. Fisher's PLSD intervals (alpha=.05) were calculated for comparisons among the means. RESULTS: The polished specimens had significantly higher Delta E values, significantly higher surface gloss values, and significantly lower surface roughness values than the glazed specimens before fluoride treatment (P<.001). After both fluoride treatments, ceramic disks exhibited significantly higher surface roughness values when polished and significantly lower surface gloss values when glazed or polished (P<.001). The glazed specimens presented significantly higher surface roughness (P<.001) and lower surface gloss values (P<.001) when treated with 0.4% SnF(2) as compared to NaF. For the polished specimens, there was no significant difference in surface roughness and surface gloss values between the 2 fluoride treatments. CONCLUSIONS: Use of 0.4% SnF(2) and 1.1% NaF gels, in vitro, caused significant color change in the polished IPS Empress ceramic disks. Polishing of the ceramic surface before immersion in either fluoride agent caused the ceramic tested to be more resistant to etching by the 2 solutions tested. The NaF caused less deterioration of the porcelain surface and was less stain inducing than SnF(2).