3 resultados para heat conduction and convection

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stress response pathways allow cells to sense and respond to environmental changes and adverse pathophysiological states. Pharmacological modulation of cellular stress pathways has implications in the treatment of human diseases, including neurodegenerative disorders, cardiovascular disease, and cancer. The quinone methide triterpene celastrol, derived from a traditional Chinese medicinal herb, has numerous pharmacological properties, and it is a potent activator of the mammalian heat shock transcription factor HSF1. However, its mode of action and spectrum of cellular targets are poorly understood. We show here that celastrol activates Hsf1 in Saccharomyces cerevisiae at a similar effective concentration seen in mammalian cells. Transcriptional profiling revealed that celastrol treatment induces a battery of oxidant defense genes in addition to heat shock genes. Celastrol activated the yeast Yap1 oxidant defense transcription factor via the carboxy-terminal redox center that responds to electrophilic compounds. Antioxidant response genes were likewise induced in mammalian cells, demonstrating that the activation of two major cell stress pathways by celastrol is conserved. We report that celastrol's biological effects, including inhibition of glucocorticoid receptor activity, can be blocked by the addition of excess free thiol, suggesting a chemical mechanism for biological activity based on modification of key reactive thiols by this natural product.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The baker's yeast, Saccharomyces cerevisiae responds to the cytotoxic effects of elevated temperature (37-42°C) by activating transcription of ∼150 genes, termed heat shock genes, collectively required to compensate for the abundance of misfolded and aggregated proteins and various physiological modifications necessary for the cell to survive and grow at heat shock temperatures. An intriguing facet of the yeast heat shock response is the remarkable similarity it shares with the global remodeling that occurs in mammalian cells in response to numerous pathophysiological conditions including cancer and cardiovascular disease and thus provides an ideal model system. I have therefore investigated several novel features of stress signaling, transcriptional regulation, and physiology. Initial work focused on the characterization of SYM1, a novel heat shock gene in yeast which was demonstrated to be required for growth on the nonfermentable carbon source ethanol at elevated temperature, and to be the functional ortholog of the mammalian kidney disease gene, Mpv17. Additional work addressed the role of two proteins, the Akt-related kinase, Sch9, and Sse1, the yeast Hsp110 protein chaperone homolog, in signaling by protein kinase A, establishing Sse1 as a critical negative regulator of this pathway. Furthermore, I have demonstrated a role for Sse1 in biogenesis and stability of the stress-response transcription factor, Msn2; a finding that has been extended to include a select subset of additional high molecular weight proteins, suggesting a more global role for this chaperone in stabilizing the cellular proteome. The final emphasis of my doctoral work has included the finding that celastrol, a compound isolated from the plant family Celasfraceae, a component of traditional Chinese herbal medicine, can activate heat shock transcription factor (Hsf1) in yeast and mammalian cells through an oxidative stress mechanism. Celastrol treatment simultaneously activates both heat shock and oxidative stress response pathways, resulting in increased cytoprotection. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. Obesity is a major health problem throughout the industrialized world. Despite numerous attempts to curtail the rapid growth of obesity, its incidence continues to rise. Therefore, it is crucial to better understand the etiology of obesity beyond the concept of energy balance.^ Aims. The first aim of this study was to first investigate the relationship between eating behaviors and body size. The second goal was to identify genetic variation associated with eating behaviors. Thirdly, this study aimed to examine the joint relationships between eating behavior, body size and genetic variation.^ Methods. This study utilized baseline data ascertained in young adults from the Training Interventions and Genetics of Exercise (TIGER) Study. Variables assessed included eating behavior (Emotional Eating Scale, Eating Attitudes Test-26, and the Block98 Food Frequency Questionnaire), body size (body mass index, waist and hip circumference, waist/hip ratio, and percent body fat), genetic variation in genes implicated related to the hypothalamic control of energy balance, and appropriate covariates (age, gender, race/ethnicity, smoking status, and physical activity. For the genetic association analyses, genotypes were collapsed by minor allele frequency, and haplotypes were estimated for each gene. Additionally, Bayesian networks were constructed in order to determine the relationships between genetic variation, eating behavior and body size.^ Results. We report that the EAT-26 score, Caloric intake, percent fat, fiber intake, HEAT index, and daily servings of vegetables, meats, grains, and fats were significantly associated with at least one body size measure. Multiple SNPs in 17 genes and haplotypes from 12 genes were tested for their association with body size. Variation within both DRD4 and HTR2A was found to be associated with EAT-26 score. In addition, variation in the ghrelin gene (GHRL) was significantly associated with daily Caloric intake. A significant interaction between daily servings of grains and the HEAT index and variation within the leptin receptor gene (LEPR) was shown to influence body size.^ Conclusion. This study has shown that there is a substantial genetic component to eating behavior and that genetic variation interacts with eating behavior to influence body size.^