10 resultados para health informatics
em DigitalCommons@The Texas Medical Center
Resumo:
Hypertutorials optimize five features - presentation, learner control, practice, feedback, and elaborative learning resources. Previous research showed graduate students significantly and overwhelmingly preferred Web-based hypertutorials to conventional "Book-on-the-Web" statistics or research design lessons. The current report shows that the source of hypertutorials' superiority in student evaluations of instruction lies in their hypertutorial features. Randomized comparisons between the two methodologies were conducted in two successive iterations of a graduate level health informatics research design and evaluation course. The two versions contained the same text and graphics, but differed in the presence or absence of hypertutorial features: Elaborative learning resources, practice, feedback, and amount of learner control. Students gave high evaluations to both Web-based methodologies, but consistently rated the hypertutorial lessons as superior. Significant differences localized in the hypertutorial subscale that measured student responses to hypertutorial features.
Resumo:
Online courses will play a key role in the high-volume Informatics education required to train the personnel that will be necessary to fulfill the health IT needs of the country. Online courses can cause feelings of isolation in students. A common way to address these feelings is to hold synchronous online "chats" for students. Conventional chats, however, can be confusing and impose a high extrinsic cognitive load on their participants that hinders the learning process. In this paper we present a qualitative analysis that shows the causes of this high cognitive load and our solution through the use of a moderated chat system.
Resumo:
Introduction: Foundations of Health Information Sciences I is the first class many students take to introduce them to the field of health informatics. It is completely online, and uses optional weekly text-only chats to provide real time interaction between faculty and students. Chat sessions were very disorganized and difficult to follow, both real time and on the transcript. Research suggests that the disorganization contributes to cognitive load. [See PDF for complete abstract]
Resumo:
Clinical text understanding (CTU) is of interest to health informatics because critical clinical information frequently represented as unconstrained text in electronic health records are extensively used by human experts to guide clinical practice, decision making, and to document delivery of care, but are largely unusable by information systems for queries and computations. Recent initiatives advocating for translational research call for generation of technologies that can integrate structured clinical data with unstructured data, provide a unified interface to all data, and contextualize clinical information for reuse in multidisciplinary and collaborative environment envisioned by CTSA program. This implies that technologies for the processing and interpretation of clinical text should be evaluated not only in terms of their validity and reliability in their intended environment, but also in light of their interoperability, and ability to support information integration and contextualization in a distributed and dynamic environment. This vision adds a new layer of information representation requirements that needs to be accounted for when conceptualizing implementation or acquisition of clinical text processing tools and technologies for multidisciplinary research. On the other hand, electronic health records frequently contain unconstrained clinical text with high variability in use of terms and documentation practices, and without commitmentto grammatical or syntactic structure of the language (e.g. Triage notes, physician and nurse notes, chief complaints, etc). This hinders performance of natural language processing technologies which typically rely heavily on the syntax of language and grammatical structure of the text. This document introduces our method to transform unconstrained clinical text found in electronic health information systems to a formal (computationally understandable) representation that is suitable for querying, integration, contextualization and reuse, and is resilient to the grammatical and syntactic irregularities of the clinical text. We present our design rationale, method, and results of evaluation in processing chief complaints and triage notes from 8 different emergency departments in Houston Texas. At the end, we will discuss significance of our contribution in enabling use of clinical text in a practical bio-surveillance setting.
Resumo:
Epilepsy is a very complex disease which can have a variety of etiologies, co-morbidities, and a long list of psychosocial factors4. Clinical management of epilepsy patients typically includes serological tests, EEG's, and imaging studies to determine the single best antiepileptic drug (AED). Self-management is a vital component of achieving optimal health when living with a chronic disease. For patients with epilepsy self-management includes any necessary actions to control seizures and cope with any subsequent effects of the condition9; including aspects of treatment, seizure, and lifestyle. The use of computer-based applications can allow for more effective use of clinic visits and ultimately enhance the patient-provider relationship through focused discussion of determinants affecting self-management. ^ The purpose of this study is to conduct a systematic literature review on informatics application in epilepsy self-management in an effort to describe current evidence for informatics applications and decision support as an adjunct to successful clinical management of epilepsy. Each publication was analyzed for the type of study design utilized. ^ A total of 68 publications were included and categorized by the study design used, development stage, and clinical domain. Descriptive study designs comprised of three-fourths of the publications and indicate an underwhelming use of prospective studies. The vast majority of prospective studies also focused on clinician use to increase knowledge in treating patients with epilepsy. ^ Due to the chronic nature of epilepsy and the difficulty that both clinicians and patients can experience in managing epilepsy, more prospective studies are needed to evaluate applications that can effectively increase management activities. Within the last two decades of epilepsy research, management studies have employed the use of biomedical informatics applications. While the use of computer applications to manage epilepsy has increased, more progress is needed.^