2 resultados para hazard rate functions

em DigitalCommons@The Texas Medical Center


Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is widely accepted that the process of breast cancer tumorigenesis involves estrogen receptor-alpha (ER)-regulated stimulatory pathways, which feed into survival, cell cycle progression and proliferative response. Recent data from Kumar laboratory indicate that dynein light chain 1 (DLC1) plays a role in survival, motility and invasiveness, all of which are required for a successful tumorigenesis process. In the present research, we have discovered a mechanistic bidirectional regulatory link between the DLC1 and ER. We found that DLC1 facilitates ligand-induced ER transactivation involving the recruitment of the DLC1-ER complex to ER-target genes. To gain insights into the mechanism by which DLC1 regulates the ER pathway, we set out to identify novel DLC1-interacting proteins. Among other proteins, we identified KIBRA and Ciz1 as two novel DLC1-interacting proteins. We found that the KIBRA-DLC1 complex is recruited to ER-responsive promoters, and that KIBRA-DLC1 interaction is needed for the recruitment of ER to its targets as well as for ER's transactivation function. Finally, we found that KIBRA utilizes its histone H3interacting glutamic acid-rich region to regulate the transactivation activity of ER. During the course of this work, we also discovered that DLC1 interacts with Cdk2 and Ciz1, and such interactions play a direct accelerating role in the G1-S transition of breast cancer cells. While delineating the role of Ciz1 in hormone-responsive cancer cells, we found that Ciz1 is an estrogen-responsive gene, and acts as a co-regulator of ER. Accordingly, Ciz1 overexpression in breast cancer cells conferred estrogen hypersensitivity, promoted the growth-rate, anchorage-independency and tumorigenic properties. Collectively, findings made during the course of the present dissertation research introduced two new molecular players in the action of ER in breast cancer cells, with a particular focus on cell cycle progression and ER-chromatin target regulation. In addition, findings presented here provide novel mechanistic insight about the contribution of DLC1 and its interacting proteins in amplifying the hormone action and promoting the process of breast cancer tumorigenesis. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inflammatory breast cancer (IBC) is a rare but very aggressive form of locally advanced breast cancer (1-6% of total breast cancer patients in United States), with a 5-year overall survival rate of only 40.5%, compared with 85% of the non-IBC patients. So far, a unique molecular signature for IBC able to explain the dramatic differences in the tumor biology between IBC and non-IBC has not been identified. As immune cells in the tumor microenvironment plays an important role in regulating tumor progression, we hypothesized that tumor-associated dendritic cells (TADC) may be responsible for regulating the development of the aggressive characteristics of IBC. MiRNAs can be released into the extracellular space and mediate the intercellular communication by regulating target gene expression beyond their cells of origin. We hypothesized that miRNAs released by IBC cells can induce an increased activation status, secretion of pro-inflammatory cytokines and migration ability of TADC. In an in vitro model of IBC tumor microenvironment, we found that the co-cultured of the IBC cell line SUM-149 with immature dendritic cells (iDCSUM-149) induced a higher degree of activation and maturation of iDCSUM-149 upon stimulation with lipopolysaccharide (LPS) compared with iDCs co-cultured with the non-IBC cell line SUM-159 (iDCSUM-159), resulting in: increased expression of the costimulatory and activation markers; higher production of pro-inflammatory cytokines (TNF-a, IL-6); and 3) higher migratory ability. These differences were due to the exosome-mediated transfer of miR-19a and miR-146a from SUM-149 and SUM-159, respectively, to iDCs, causing the downregulation of the miR-19a target genes PTEN, SOCS-1 and the miR-146a target genes IRAK1, TRAF6. PTEN, SOCS-1 and IRAK1, TRAF6 are important negative and positive regulator of cytokine- and TLR-mediated activation/maturation signaling pathway in DCs. Increased levels of IL-6 induced the upregulation of miR-19a synthesis in SUM-149 cells that was associated with the induction of CD44+CD24-ALDH1+ cancer stem cells (CSCs) with epithelial-to-mesenchymal transition (EMT) characteristics. In conclusion, in IBC tumor microenvironment IL-6/miR-19a axis can represent a self-sustaining loop able to maintain a pro-inflammatory status of DCs, leading to the development of tumor cells with high metastatic potential (EMT CSCs) responsible of the poor prognosis in IBC patients.