3 resultados para gradually truncated log-normal
em DigitalCommons@The Texas Medical Center
Resumo:
A variety of occupational hazards are indigenous to academic and research institutions, ranging from traditional life safety concerns, such as fire safety and fall protection, to specialized occupational hygiene issues such as exposure to carcinogenic chemicals, radiation sources, and infectious microorganisms. Institutional health and safety programs are constantly challenged to establish and maintain adequate protective measures for this wide array of hazards. A unique subset of academic and research institutions are classified as historically Black universities which provide educational opportunities primarily to minority populations. State funded minority schools receive less resources than their non-minority counterparts, resulting in a reduced ability to provide certain programs and services. Comprehensive health and safety services for these institutions may be one of the services compromised, resulting in uncontrolled exposures to various workplace hazards. Such a result would also be contrary to the national health status objectives to improve preventive health care measures for minority populations.^ To determine if differences exist, a cross-sectional survey was performed to evaluate the relative status of health and safety programs present within minority and non-minority state-funded academic and research institutions. Data were obtained from direct mail questionnaires, supplemented by data from publicly available sources. Parameters for comparison included reported numbers of full and part-time health and safety staff, reported OSHA 200 log (or equivalent) values, and reported workers compensation experience modifiers. The relative impact of institutional minority status, institution size, and OSHA regulatory environment, was also assessed. Additional health and safety program descriptors were solicited in an attempt to develop a preliminary profile of the hazards present in this unique work setting.^ Survey forms were distributed to 24 minority and 51 non-minority institutions. A total of 72% of the questionnaires were returned, with 58% of the minority and 78% of the non-minority institutions participating. The mean number of reported full-time health and safety staff for the responding minority institutions was determined to be 1.14, compared to 3.12 for the responding non-minority institutions. Data distribution variances were stabilized using log-normal transformations, and although subsequent analysis indicated statistically significant differences, the differences were found to be predicted by institution size only, and not by minority status or OSHA regulatory environment. Similar results were noted for estimated full-time equivalent health and safety staffing levels. Significant differences were not noted between reported OSHA 200 log (or equivalent) data, and a lack of information provided on workers compensation experience modifiers prevented comparisons on insurance premium expenditures. Other health and safety program descriptive information obtained served to validate the study's presupposition that the inclusion criteria would encompass those organizations with occupational risks from all four major hazard categories. Worker medical surveillance programs appeared to exist at most institutions, but the specific tests completed were not readily identifiable.^ The results of this study serve as a preliminary description of the health and safety programs for a unique set of workplaces have not been previously investigated. Numerous opportunities for further research are noted, including efforts to quantify the relative amount of each hazard present, the further definition of the programs reported to be in place, determination of other means to measure health outcomes on campuses, and comparisons among other culturally diverse workplaces. ^
Resumo:
The efficacy of waste stabilization lagoons for the treatment of five priority pollutants and two widely used commercial compounds was evaluated in laboratory model ponds. Three ponds were designed to simulate a primary anaerobic lagoon, a secondary facultative lagoon, and a tertiary aerobic lagoon. Biodegradation, volatilization, and sorption losses were quantified for bis(2-chloroethyl) ether, benzene, toluene, naphthalene, phenanthrene, ethylene glycol, and ethylene glycol monoethyl ether. A statistical model using a log normal transformation indicated biodegradation of bis(2-chloroethyl) ether followed first-order kinetics. Additionally, multiple regression analysis indicated biochemical oxygen demand was the water quality variable most highly correlated with bis(2-chloroethyl) ether effluent concentration. ^
Resumo:
Nuclear morphometry (NM) uses image analysis to measure features of the cell nucleus which are classified as: bulk properties, shape or form, and DNA distribution. Studies have used these measurements as diagnostic and prognostic indicators of disease with inconclusive results. The distributional properties of these variables have not been systematically investigated although much of the medical data exhibit nonnormal distributions. Measurements are done on several hundred cells per patient so summary measurements reflecting the underlying distribution are needed.^ Distributional characteristics of 34 NM variables from prostate cancer cells were investigated using graphical and analytical techniques. Cells per sample ranged from 52 to 458. A small sample of patients with benign prostatic hyperplasia (BPH), representing non-cancer cells, was used for general comparison with the cancer cells.^ Data transformations such as log, square root and 1/x did not yield normality as measured by the Shapiro-Wilks test for normality. A modulus transformation, used for distributions having abnormal kurtosis values, also did not produce normality.^ Kernel density histograms of the 34 variables exhibited non-normality and 18 variables also exhibited bimodality. A bimodality coefficient was calculated and 3 variables: DNA concentration, shape and elongation, showed the strongest evidence of bimodality and were studied further.^ Two analytical approaches were used to obtain a summary measure for each variable for each patient: cluster analysis to determine significant clusters and a mixture model analysis using a two component model having a Gaussian distribution with equal variances. The mixture component parameters were used to bootstrap the log likelihood ratio to determine the significant number of components, 1 or 2. These summary measures were used as predictors of disease severity in several proportional odds logistic regression models. The disease severity scale had 5 levels and was constructed of 3 components: extracapsulary penetration (ECP), lymph node involvement (LN+) and seminal vesicle involvement (SV+) which represent surrogate measures of prognosis. The summary measures were not strong predictors of disease severity. There was some indication from the mixture model results that there were changes in mean levels and proportions of the components in the lower severity levels. ^