25 resultados para glutamate decarboxylase antibody
em DigitalCommons@The Texas Medical Center
Resumo:
PURPOSE: To characterize cyan fluorescent protein (CFP) expression in the retina of the thy1-CFP (B6.Cg-Tg(Thy1-CFP)23Jrs/J) transgenic mouse line. METHODS: CFP expression was characterized using morphometric methods and immunohistochemistry with antibodies to neurofilament light (NF-L), neuronal nuclei (NeuN), POU-domain protein (Brn3a) and calretinin, which immunolabel ganglion cells, and syntaxin 1 (HPC-1), glutamate decarboxylase 67 (GAD(67)), GABA plasma membrane transporter-1 (GAT-1), and choline acetyltransferase (ChAT), which immunolabel amacrine cells. RESULTS: CFP was extensively expressed in the inner retina, primarily in the inner plexiform layer (IPL), ganglion cell layer (GCL), nerve fiber layer, and optic nerve. CFP fluorescent cell bodies were in all retinal regions and their processes ramified in all laminae of the IPL. Some small, weakly CFP fluorescent somata were in the inner nuclear layer (INL). CFP-containing somata in the GCL ranged from 6 to 20 microm in diameter, and they had a density of 2636+/-347 cells/mm2 at 1.5 mm from the optic nerve head. Immunohistochemical studies demonstrated colocalization of CFP with the ganglion cell markers NF-L, NeuN, Brn3a, and calretinin. Immunohistochemistry with antibodies to HPC-1, GAD(67), GAT-1, and ChAT indicated that the small, weakly fluorescent CFP cells in the INL and GCL were cholinergic amacrine cells. CONCLUSIONS: The total number and density of CFP-fluorescent cells in the GCL were within the range of previous estimates of the total number of ganglion cells in the C57BL/6J line. Together these findings suggest that most ganglion cells in the thy1-CFP mouse line 23 express CFP. In conclusion, the thy1-CFP mouse line is highly useful for studies requiring the identification of ganglion cells.
Resumo:
Glutamate is the major excitatory neurotransmitter in the retina and serves as the synaptic messenger for the three classes of neurons which constitute the vertical pathway--the photoreceptors, bipolar cells and ganglion cells. In addition, the glutamate system has been localized morphologically, pharmacologically as well as molecularly during the first postnatal week of development before synaptogenesis occurs. The role which glutamate plays in the maturing visual system is complex but ranges from mediating developmental neurotoxicity to inducing neurite outgrowth.^ Nitric oxide/cGMP is a novel intercellular messenger which is thought to act in concert with the glutamate system in regulating a variety of cellular processes in the brain as well as retina, most notably neurotoxicity. Several developmental activities including programmed cell death, synapse elimination and synaptic reorganization are possible functions of cellular regulation modulated by nitric oxide as well as glutamate.^ The purpose of this thesis is to (1) biochemically characterize the endogenous pools of glutamate and determine what fraction exists extracellularly; (2) examine the morphological expression of NO producing cells in developing retina; (3) test the functional coupling of the NMDA subtype of glutamate receptor to the NO system by examining neurotoxicity which has roles in both the maturing and adult retina.^ Biochemical sampling of perfusates collected from the photoreceptor surface of ex vivo retina demonstrated that although the total pool of glutamate present at birth is relatively modest, a high percentage resides in extracellular pools. As a result, immature neurons without significant synaptic connections survive and develop in a highly glutamatergic environment which has been shown to be toxic in the adult retina.^ The interaction of the glutamate system with the NO system has been postulated to regulate neuronal survival. We therefore examined the developmental expression of the enzyme responsible for producing NO, nitric oxide synthase (NOS), using an antibody to the constitutive form of NOS found in the brain. The neurons thought to produce the majority of NO in the adult retina, a subpopulation of widefield amacrine cells, were not immunoreactive until the end of the second postnatal week. However, a unique developmental expression was observed in the ganglion cell layer and developing outer nuclear layer of the retina during the first postnatal week. We postulate NO producing neurons may not be present in a mature configuration therefore permitting neuronal survival in a highly glutamatergic microenvironment and allowing NO to play a development-specific role at this time.^ The next set of experiments constituted a functional test of the hypothesis that the absence of the prototypic NO producing cells in developing retina protects immature neurons against glutamate toxicity. An explant culture system developed in order to examine cellular responses of immature and adult neurons to glutamate toxicity showed that immature neurons were affected by NMDA but were less responsive to NMDA and NO mediated toxicity. In contrast, adult explants exhibited significant NMDA toxicity which was attenuated by NMDA antagonists, 2-amino-5-phosphonovaleric acid (APV), dextromethorphan (Dex) and N$\rm\sp{G}$-D-methyl arginine (metARG). These results indicated that pan-retinal neurotoxicity via the NMDA receptor and/or NO activation occurred in the adult retina but was not significant in the neonate. (Abstract shortened by UMI.) ^
Resumo:
Regulation of glutamate transporters accompanies plasticity of some glutamatergic synapses. The regulation of glutamate uptake at the Aplysia sensorimotor synapse during long-term facilitation (LTF) was investigated. Previously, increases in levels of ApGT1 (Aplysia glutamate transporter 1) in synaptic membranes were found to be related to long-term increases in glutamate uptake. In this study, we found that regulation of ApGT1 during LTF appears to occur post-translationally. Serotonin (5-HT) a transmitter that induces LTF did not increase synthesis of ApGT1. A pool of ApGT1 appears to exist in sensory neuron somata, which is transported to the terminals by axonal transport. Blocking the rough endoplasmic reticulum-Golgi-trans-Golgi network (TGN) pathway with Brefeldin A prevented the 5-HT-induced increase of ApGT1 in terminals. Also, 5-HT produced changes in post-translational modifications of ApGT1 as well as changes in the levels of an ApGT1-co-precipitating protein. These results suggest that regulation of trafficking of ApGT1 from the vesicular trafficking system (rough endoplasmic reticulum-Golgi-TGN) in the sensory neuron somata to the terminals by post-translational modifications and protein interactions appears to be the mechanism underlying the increase in ApGT1, and thus, glutamate uptake during memory formation.
Resumo:
An increase in transmitter release accompanying long-term sensitization and facilitation occurs at the glutamatergic sensorimotor synapse of Aplysia. We report that a long-term increase in neuronal Glu uptake also accompanies long-term sensitization. Synaptosomes from pleural-pedal ganglia exhibited sodium-dependent, high-affinity Glu transport. Different treatments that induce long-term enhancement of the siphon-withdrawal reflex, or long-term synaptic facilitation increased Glu uptake. Moreover, 5-hydroxytryptamine, a treatment that induces long-term facilitation, also produced a long-term increase in Glu uptake in cultures of sensory neurons. The mechanism for the increase in uptake is an increase in the V(max) of transport. The long-term increase in Glu uptake appeared to be dependent on mRNA and protein synthesis, and transport through the Golgi, because 5,6-dichlorobenzimidazole riboside, emetine, and brefeldin A inhibited the increase in Glu uptake. Also, injection of emetine and 5,6-dichlorobenzimidazole into Aplysia prevented long-term sensitization. Synthesis of Glu itself may be regulated during long-term sensitization because the same treatments that produced an increase in Glu uptake also produced a parallel increase in Gln uptake. These results suggest that coordinated regulation of a number of different processes may be required to establish or maintain long-term synaptic facilitation.
Resumo:
The family of membrane protein called glutamate receptors play an important role in the central nervous system in mediating signaling between neurons. Glutamate receptors are involved in the elaborate game that nerve cells play with each other in order to control movement, memory, and learning. Neurons achieve this communication by rapidly converting electrical signals into chemical signals and then converting them back into electrical signals. To propagate an electrical impulse, neurons in the brain launch bursts of neurotransmitter molecules like glutamate at the junction between neurons, called the synapse. Glutamate receptors are found lodged in the membranes of the post-synaptic neuron. They receive the burst of neurotransmitters and respond by fielding the neurotransmitters and opening ion channels. Glutamate receptors have been implicated in a number of neuropathologies like ischemia, stroke and amyotrophic lateral sclerosis. Specifically, the NMDA subtype of glutamate receptors has been linked to the onset of Alzheimer’s disease and the subsequent degeneration of neuronal cells. While crystal structures of AMPA and kainate subtypes of glutamate receptors have provided valuable information regarding the assembly and mechanism of activation; little is known about the NMDA receptors. Even the basic question of receptor assembly still remains unanswered. Therefore, to gain a clear understanding of how the receptors are assembled and how agonist binding gets translated to channel opening, I have used a technique called Luminescence Resonance Energy Transfer (LRET). LRET offers the unique advantage of tracking large scale conformational changes associated with receptor activation and desensitization. In this dissertation, LRET, in combination with biochemical and electrophysiological studies, were performed on the NMDA receptors to draw a correlation between structure and function. NMDA receptor subtypes GluN1 and GluN2A were modified such that fluorophores could be introduced at specific sites to determine their pattern of assembly. The results indicated that the GluN1 subunits assembled across each other in a diagonal manner to form a functional receptor. Once the subunit arrangement was established, this was used as a model to further examine the mechanism of activation in this subtype of glutamate receptor. Using LRET, the correlation between cleft closure and activation was tested for both the GluN1 and GluN2A subunit of the NMDA receptor in response to agonists of varying efficacies. These investigations revealed that cleft closure plays a major role in the mechanism of activation in the NMDA receptor, similar to the AMPA and kainate subtypes. Therefore, suggesting that the mechanism of activation is conserved across the different subtypes of glutamate receptors.
Resumo:
The plasma membrane xc- cystine/glutamate transporter mediates cellular uptake of cystine in exchange for intracellular glutamate and is highly expressed by pancreatic cancer cells. The xCT gene, encoding the cystine-specific xCT protein subunit of xc-, is important in regulating intracellular glutathione (GSH) levels, critical for cancer cell protection against oxidative stress, tumor growth and resistance to chemotherapeutic agents including platinum. We examined 4 single nucleotide polymorphisms (SNPs) of the xCT gene in 269 advanced pancreatic cancer patients who received first line gemcitabine with or without cisplatin or oxaliplatin. Genotyping was performed using Taqman real-time PCR assays. A statistically significant correlation was noted between the 3' untranslated region (UTR) xCT SNP rs7674870 and overall survival (OS): Median survival time (MST) was 10.9 and 13.6 months, respectively, for the TT and TC/CC genotypes (p = 0.027). Stratified analysis showed the genotype effect was significant in patients receiving gemcitabine in combination with platinum therapy (n = 145): MST was 10.5 versus 14.1 months for the TT and TC/CC genotypes, respectively (p = 0.013). The 3' UTR xCT SNP rs7674870 may correlate with OS in pancreatic cancer patients receiving gemcitabine and platinum combination therapy. Paraffin-embedded core and surgical biopsy tumor specimens from 98 patients with metastatic pancreatic adenocarcinoma were analyzed by immunohistochemistry using an xCT specific antibody. xCT protein IHC expression scores were analyzed in relation to overall survival in 86 patients and genotype in 12 patients and no statistically significant association was found between the level of xCT IHC expression score and overall survival (p = 0.514). When xCT expression was analyzed in terms of treatment response, no statistically significant associations could be determined (p = 0.908). These data suggest that polymorphic variants of xCT may have predictive value, and that the xc- transporter may represent an important target for therapy in pancreatic cancer.
Resumo:
Ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine biosynthesis exists as two major and one minor ionic form in the macrophage cell line, RAW 264. The forms have the same molecular weight, 55,000, but differ in their isoelectric points, 5.2, 5.1, and 4.9-5.0. The hypothesis that phosphorylation accounts for the differences in the two major ionic forms and that phosphorylation is involved in the regulation of enzyme activity was investigated. Metabolic-radiolabeling of cells with $\sp{32}$P-orthophosphate indicated that only one of the major forms of the protein can be explained by phosphorylation: treatment of purified ODC with alkaline phosphatase resulted in the loss of the phosphorylated form of the protein, pl 5.1, with a concomitant increase in the unphosphorylated, pl 5.2, form of the protein. Characterization of the phosphorylation sites showed that serine was the present. Tryptic digests of $\sp{32}$P-labeled ODC, analyzed by either two dimensional tryptic peptide mapping or reverse-phase HPLC, contained only one major radiolabeled peptide.^ The role phosphorylation plays in the regulation of enzyme activity was also investigated. Treatment of purified ODC with alkaline phosphatase resulted in the loss of enzyme activity. A positive linear correlation exists between enzyme activity and the amount of phosphorylated form of the protein present.^ To ascertain if the two major forms of the protein were also found in animal cells, ODC was immunoprecipitated from various rat tissues, fractionated by isoelectric focusing, and detected by immunoblotting. ODC was present in rat tissues in a single major form, which comigrated with the pl 5.1, phosphorylated form of ODC present in RAW 264 cell.^ This study concludes that ODC exists as a phosphorylated form, pl 5.1, and an unphosphorylated form, pl 5.2 in RAW 264 cells. The amount of the phosphorylated form of ODC correlates well with the enzyme activity. ^
Resumo:
The amino acid glutamate is the primary excitatory neurotransmitter for the CNS and is responsible for the majority of fast synaptic transmission. Glutamate receptors have been shown to be involved in multiple forms of synaptic plasticity such as LTP, LTD, and the formation of specific synaptic connections during development. In addition to contributing to the plasticity of the CNS, glutamate receptors also are involved in, at least in part, various pathological conditions such as epilepsy, ischemic damage due to stroke, and Huntington's chorea. The regulation of glutamate receptors, particularly the ionotropic NMDA and AMPA/KA receptors is therefore of great interest. In this body of work, glutamate receptor function and regulation by kinase activity was examined using the Xenopus oocyte which is a convenient and faithful expression system for exogenous proteins. Glutamate receptor responses were measured using the two-electrode voltage clamp technique in oocytes injected with rat total forebrain RNA. NMDA elicited currents that were glycine-dependent, subject to block by Mg$\sp{2+}$ in a voltage-dependent manner and sensitive to the specific NMDA antagonist APV in a manner consistent with those types of responses found in neural tissue. Similarly, KA-evoked currents were sensitive to the specific AMPA/KA antagonist CNQX and exhibited current voltage relationships consistent with the calcium permeable type II KA receptors found in the hippocampus. There is evidence to indicate that NMDA and AMPA/KA receptors are regulated by protein kinase A (PKA). We explored this by examining the effects of activators of PKA (forskolin, 1-isobutyl-3-methylxanthine (IBMX) and 8-Br-cAMP) on NMDA and KA currents in the oocyte. In buffer where Ca$\sp{2+}$ was replaced by 2 mM Ba$\sp{2+},$ forskolin plus IBMX and 8-Br-cAMP augmented currents due to NMDA application but not KA. This augmentation was abolished by pretreating the oocytes in the kinase inhibitor K252A. The use of chloride channel blockers resulted in attenuation of this effect indicating that Ba$\sp{2+}$ influx through the NMDA channel was activating the endogenous calcium-activated chloride current and that the cAMP mediated augmentation was at the level of the chloride channel and not the NMDA channel. This was confirmed by (1) the finding that 8-Br-cAMP increased chloride currents elicited via calcium channel activation while having no effect on the calcium channels themselves and (2) the fact that lowering the Ba$\sp{2+}$ concentration to 200 $\mu$M abolished the augmentation NMDA currents by 8-Br-cAMP. Thus PKA does not appear to modulate ionotropic glutamate receptors in our preparation. Another kinase also implicated in the regulation of NMDA receptors, calcium/phospholipid-dependent protein kinase (PKC), was examined for its effects on the NMDA receptor under low Ba$\sp{2+}$ (200 $\mu$M) conditions. Phorbol esters, activators of PKC, induced a robust potentiation of NMDA currents that was blockable by the kinase inhibitor K252A. Furthermore activation of metabotropic receptors by the selective agonist trans-ACPD, also potentiated NMDA albeit more modestly. These results indicate that neither NMDA nor KA-activated glutamate receptors are modulated by PKA in Xenopus oocytes whereas NMDA receptors appear to be augmented by PKC. Furthermore, the endogenous chloride current of the oocyte was found to be responsive to Ba$\sp{2+}$ and in addition is enhanced by PKA. Both of these latter findings are novel. In conclusion, the Xenopus oocyte is a useful expression system for the analysis of ligand-gated channel activity and the regulation of those channels by phosphorylation. ^
Resumo:
Ornithine decarboxylase (ODC), the initial inducible enzyme in the polyamine biosynthetic pathway, exists in the transformed macrophage RAW264 cell line as a phosphoprotein following cell stimulation. The hypothesis that ODC is phosphorylated at multiple sites in stimulated RAW264 cells was investigated. ODC isolated from tetradecanoyl-phorbol-13-acetate (TPA)-stimulated cells metabolically radiolabeled in the presence of $\sp{32}$P$\sb{\rm i}$ was subjected to cyanogen bromide (CNBr) cleavage followed by phosphopeptide mapping and two dimensional phosphoamino acid analysis. These phosphorylation studies demonstrated six in situ phosphorylated CNBr-generated fragments having apparent molecular weights of 17, 14.3, 8, 6.5, 4, and 2.7 kDa and also revealed that ODC is phosphorylated in RAW264 cells on at least 5 serine and 2 threonine residues.^ In addition, the in vivo specific activity and phosphorylation pattern of ODC in response to various kinase cascade stimulants was studied. A differential response in ODC specific activity and a variation in the relative distribution of $\sp{32}$P-labeling of serine and threonine residues on the ODC molecule was noted in response to fetal bovine serum, cAMP and isobutylmethylxanthine, lipopolysaccharide, or TPA.^ Based on information derived from consensus sequence motifs, three protein kinases responsible for the phosphorylation of ODC in vitro were identified. Purified ODC was phosphorylated in vitro by casein kinase II (CK II), extracellular signal-regulated kinase 1 (ERK1), and its activator, extracellular signal-regulated kinase kinase (MEK). CK II phosphorylated ODC on serine residues contained on three CNBr-generated peptides with apparent molecular weights of 14.3, 6.5, and 2.7 kDa. Both ERK1 and MEK phosphorylated ODC on serine and threonine residues on a CNBr-generated peptide fragment with an apparent molecular weight of 6.5 kDa. The in vitro radiolabeled peptides corresponded in molecular mass with some of the CNBr fragments of ODC phosphorylated in situ in stimulated RAW264 cells.^ This study concludes that ODC is phosphorylated in the transformed macrophage RAW264 cell line at multiple sites in response to various kinase cascade stimulants. These stimulants also led to a differential response in specific activity and phosphorylation pattern of ODC in RAW264 cells. Three protein kinases have been identified which phosphorylate ODC in vitro on peptides and amino acid residues which correspond with those phosphorylated in situ. ^
Glutamate iontophoresis induces long-term potentiation in the absence of evoked presynaptic activity
Resumo:
$\rm\underline{L}$ong-$\rm\underline{t}$erm $\rm\underline{p}$otentiation (LTP) is a candidate cellular mechanism underlying mammalian learning and memory. Protocols that induce LTP typically involve afferent stimulation. The experiments described in this dissertation tested the hypothesis that LTP induction does not require presynaptic activity. The significance of this hypothesis is underscored by results suggesting that LTP expression may involve activity-dependent presynaptic changes. An induction protocol using glutamate iontophoresis was developed that reliably induces LTP in hippocampal slices without afferent stimulation (ionto-LTP). Ionto-LTP is induced when excitatory postsynaptic potentials are completely blocked with adenosine and $\rm\underline{t}$etrodo$\rm\underline{t}$o$\rm\underline{x}$in (TTX). These results suggest constraints on the involvement of presynaptic mechanisms and putative retrograde messengers in LTP induction and expression; namely, these processes must function without many forms of activity-dependent presynaptic processes.^ In testing the role of pre-and postsynaptic mechanisms in LTP expression whole-cell recordings were used to examine the frequency and amplitude of $\rm\underline{s}$pontaneous $\rm\underline{e}$xcitatory $\rm\underline{p}$o$\rm\underline{s}$ynaptic $\rm\underline{c}$urrents (sEPSCs) in CA1 pyramidal neurons. sEPSCs where comprised of an equal mixture of TTX insensitive miniature EPSCs and sEPSCs that appeared to result from spontaneous action potentials (i.e., TTX sensitive EPSCs). The detection of all sEPSCs was virtually eliminated by CNQX, suggesting that sEPSCs were glutamate mediated synaptic events. Changes in the amplitude and frequency sEPSCs were examined during the expression of ionto-LTP to obtain new information about the cellular location of mechanisms involved in synaptic plasticity. The findings of this dissertation show that ionto-LTP expression results from increased sEPSC amplitude in the absence of lasting increases in sEPSC frequency. Potentiation of sEPSC amplitude without changes in sEPSC frequency has been previously interpreted to be due to postsynaptic mechanisms. Although this interpretation is supported by findings from peripheral synapses, its application to the central nervous system is unclear. Therefore, alternative mechanisms are also considered in this dissertation. Models based on increased release probability for action potential dependent transmitter release appear insufficient to explain our results. The most straightforward interpretation of the results in this dissertation is that LTP induced by glutamate iontophoresis on dendrites of CA1 pyramidal neurons is mediated by postsynaptic mechanisms. ^
Resumo:
Human colon cancer cells, LS180 and 174T, exhibit monoclonal antibody (mAb) 1083-17-1A and 5E113 defined tumor associated antigens. By radioimmunoassay, LS180 cells expressed the highest amount of mAb1083 defined antigens among the cell lines tested. Another mAb, 5E113, competed with mAb1083 for binding to LS180 cells, suggesting that both mAbs might bind onto identical (or adjacent) epitopes. By Scatchard analysis, about one million copies of the epitopes were present on LS180 colon cancer cells. The affinity of mAb1083 binding to the cells was 2.97 x 10('10) M('-1); the Sipsian heteroclonality value of mAb1083 was 0.9, thus approximating a single clone of reactive antibody. The qualitative studies showed that the epitopes were probably not carbohydrate because of their sensitivity to proteinases and not to mixed glucosidases and neuraminidase. The tunicamycin homologue B(,2) inhibited the incoporation of ('3)H-labeled galactose but not uptake of ('35)S-labeled methionine, nor expression of monoclonal antibody defined antigens providing further evidence to exclude the possibility of carbohydrate epitopes. There was evidence that the epitope might be partially masked in its "native" conformation, since short exposure or low dose treatment with proteases increased mAbs binding. The best detergent for antigen extraction, as detected by dot blotting and competitive inhibition assays, was octylglucoside at 30 mM concentration. Three methods, immunoprecipitation, Western blotting and photoaffinity labeling, were used to determine the molecular nature of the antigens. These results demonstrated that the antibody bound both 43 K daltons (KD) and 22 KD proteins.^ An in vitro cell-mediated immune approach was also used to attempt identifying function for the antigens. The strategy was to use mAbs to block cytotoxic effector cell killing. However, instead of blocking, the mAb1083 and 5E113 showed strong antibody-dependent cell-mediated cytotoxicities (ADCCs) in the in vitro xenoimmune assay system. In addition, cytotoxic T lymphocytes (CTLs), natural killer cells, and K cell activity were found. Since even the F(ab')2 fragment of mAbs did not inhibit the cytolytic effect, the mAbs defined antigens may not be major target molecules for CTLs. In summary, two molecular species of tumor antigen(s) were identified by mAbs to be present on colon tumor cell lines, LS180 and LS174T. (Abstract shortened with permission of author.) ^
Resumo:
By the use of Moloney murine sarcoma virus (Mo-MSV)-induced rat bone tumor (RBT) cells as immunogens, and the hybridoma technique, a mouse hybridoma clone was isolated in Dr. Chan's lab (Chan et al., 1983), which produced a monoclonal antibody, designated MC. MC detected specific antigens in three different Mo-MSV-transformed rat cell lines: 78A1 WRC, RBT and 6M2 (NRK cells infected with the ts110 mutant of Mo-MSV), but not in their untransformed counterparts. These antigens are tentatively termed transformation associated proteins (TAP). In this study, TAP were hypothesized to be the rat specific proteins which are activated by Mo-MSV and play an important role in cellular transformation, and were further investigated. Their properties are summarized as follows: (1) TAP may represent cellular products localized in the cytoplasm of 6M2 cells. (2) The expression of TAP is temperature-sensitive and related to cellular transformation, and probably activated by the v-mos gene products. The optimal temperature for the expression of both P85('gag-mos), the only known viral transforming protein in 6M2 cells, and TAP was 28(DEGREES)C. The expression of both P85('gag-mos) and TAP was proportional to the degree of transformation of 6M2 cells. (3) There were four antigenically-related forms of intracellular TAP (P66, P63, P60 and P58) in 6M2 cells. After synthesis, the 58Kd TAP was probably converted to one of the other three forms. These three polypeptides (P66, P63 and P60) were rapidly converted to two (P68 and P64) and subsequently secreted to the extracellular medium with a 50% secretion rate of 78 min. The conversion of these molecular sizes of TAP is probably related to glycosylation. Inhibition of TAP glycosylation by 0.5 ug/ml of tunicamycin could retard the secretion rate of TAP by 39%. (4) TAP are phosphoproteins, but not associated with any protein kinase activity. (5) TAP have been purified, and found to be mitogenic NRK-2 cells. TAP can bind to the receptors of NRK-2 cells with a K(,d) of 1.4 pM and with about 2 x 10('5) binding sites for TAP per NRK-2 cell. (6) Some weak proteolytic activity was found to associate with purified TAP. ^
Resumo:
The discovery and characterization of oncofetal proteins have led to significant advances in early cancer diagnosis and therapeutic monitoring of patients undergoing cancer chemotherapy. These tumor-associated antigens are presently measured by sensitive, specific immunoassay techniques based on the detection of minute amounts of labeled antigen or antibody incorporated into immune complexes, which must be isolated from free antigen and antibody.^ Since there are several disadvantages with using radioisotopes, the most common immunolabel, one major objective was to prepare covalently coupled enzyme-antibody conjugates and evaluate their use as a practical alternative to radiolabeled immune reagents. An improved technique for the production of enzyme-antibody conjugates was developed that involves oxidizing the carbohydrate moieties on a glycoprotein enzyme, then introducing antibody in the presence of polyethylene glycol (PEG). Covalent enzyme-antibody conjugates involving alkaline phosphatase and amyloglucosidase were produced and characterized.^ In order to increase the sensitivity of detecting the amyloglucosidase-antibody conjugate, an enzyme cycling assay was developed that measures glucose, the product of maltose cleavage by amyloglucosidase, in the picomole range. The increased sensitivity obtained by combined usage of the amyloglucosidase-antibody conjugate and enzyme cycling assay was then compared to that of conventional enzyme immunoassay (EIA).^ For immune complex isolation, polystyrene tubes and protein A-bearing Staphylococcus aureus were evaluated as solid phase matrices, upon which antibodies can be immobilized. A sandwich-type EIA, using antibody-coated S. aureus, was developed that measures human albumin (HSA) in the nanogram range. The assay, using an alkaline phosphatase-anti-HSA conjugate, was applied to the determination of HSA in human urine and evaluated extensively for its clinical applicability.^ Finally, in view of the clinical significance of alpha-fetoprotein (AFP) as an oncofetal antigen and the difficulty with its purification for use as an immunogen and assay standard, a chemical purification protocol was developed that resulted in a high yield of immunochemically pure AFP. ^