3 resultados para genetic manipulation

em DigitalCommons@The Texas Medical Center


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Lipids fulfill multiple and diverse functions in cells. Establishing the molecular basis for these functions has been challenging due to the lack of catalytic activity of lipids and the pleiotropic effects of mutations that affect lipid composition. By combining molecular genetic manipulation of membrane lipid composition with biochemical characterization of the resulting phenotypes, the molecular details of novel lipid functions have been established. This review summarizes the results of such a combined approach to defining lipid function in bacteria.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Plasmids containing hylEfm (pHylEfm) were previously shown to increase gastrointestinal colonization and lethality of Enterococcus faecium in experimental peritonitis. The hylEfm gene, predicting a glycosyl hydrolase, has been considered as a virulence determinant of hospital-associated E. faecium, although its direct contribution to virulence has not been investigated. Here, we constructed mutants of the hylEfm-region and we evaluated their effect on virulence using a murine peritonitis model. RESULTS: Five mutants of the hylEfm-region of pHylEfmTX16 from the sequenced endocarditis strain (TX16 [DO]) were obtained using an adaptation of the PheS* system and were evaluated in a commensal strain TX1330RF to which pHylEfmTX16 was transferred by mating; these include i) deletion of hylEfm only; ii) deletion of the gene downstream of hylEfm (down) of unknown function; iii) deletion of hylEfm plus down; iv) deletion of hylEfm-down and two adjacent genes; and v) a 7,534 bp deletion including these four genes plus partial deletion of two others, with replacement by cat. The 7,534 bp deletion did not affect virulence of TX16 in peritonitis but, when pHylEfmTX16Δ7,534 was transferred to the TX1330RF background, the transconjugant was affected in in vitro growth versus TX1330RF(pHylEfmTX16) and was attenuated in virulence; however, neither hylEfm nor hylEfm-down restored wild type function. We did not observe any in vivo effect on virulence of the other deletions of the hylEfm-region CONCLUSIONS: The four genes of the hylEfm region (including hylEfm) do not mediate the increased virulence conferred by pHylEfmTX16 in murine peritonitis. The use of the markerless counterselection system PheS* should facilitate the genetic manipulation of E. faecium in the future.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Biotechnology refers to the broad set of techniques that allow genetic manipulation of organisms. The techniques of biotechnology have broad implications for many industries, however it promises the greatest innovations in the production of products regulated by the Food and Drug Administration (FDA). Like many other powerful new technologies, biotechnology may carry risks as well as benefits. Several of its applications have engendered fervent emotional reactions and raised serious ethical concerns, especially internationally. ^ First, in my paper I discuss the historical and technical background of biotechnology. Second, I examine the development of biotechnology in Europe, the citizens' response to genetically modified (“GM”) foods and the governments' response. Third, I examine the regulation of bioengineered products and foods in the United States. ^ In conclusion, there are various problems with the current status of regulation of GM foods in the United States. These are four basic flaws: (1) the Coordinated Framework allows for too much jurisdictional overlap of biotechnological foods, (2) GM foods are considered GRAS and consequently, are placed on the market without pre-market approval, (3) federal mandatory labeling of GM foods cannot occur until the question of whether or not nondisclosure of a genetic engineering production processes is misleading or material information and (4) an independent state-labeling scheme of GM foods will most likely impede interstate commerce. ^