11 resultados para formation control

em DigitalCommons@The Texas Medical Center


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cells use molecular chaperones and proteases to implement the essential quality control mechanism of proteins. The DegP (HtrA) protein, essential for the survival of Escherichia coli cells at elevated temperatures with homologues found in almost all organisms uniquely has both functions. Here we report a mechanism for DegP to activate both functions via formation of large cage-like 12- and 24-mers after binding to substrate proteins. Cryo-electron microscopic and biochemical studies revealed that both oligomers are consistently assembled by blocks of DegP trimers, via pairwise PDZ1-PDZ2 interactions between neighboring trimers. Such interactions simultaneously eliminate the inhibitory effects of the PDZ2 domain. Additionally, both DegP oligomers were also observed in extracts of E. coli cells, strongly implicating their physiological importance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The molecular mechanisms controlling bone extracellular matrix (ECM) deposition by differentiated osteoblasts in postnatal life, called hereafter bone formation, are unknown. This contrasts with the growing knowledge about the genetic control of osteoblast differentiation during embryonic development. Cbfa1, a transcriptional activator of osteoblast differentiation during embryonic development, is also expressed in differentiated osteoblasts postnatally. The perinatal lethality occurring in Cbfa1-deficient mice has prevented so far the study of its function after birth. To determine if Cbfa1 plays a role during bone formation we generated transgenic mice overexpressing Cbfa1 DNA-binding domain (DeltaCbfa1) in differentiated osteoblasts only postnatally. DeltaCbfa1 has a higher affinity for DNA than Cbfa1 itself, has no transcriptional activity on its own, and can act in a dominant-negative manner in DNA cotransfection assays. DeltaCbfa1-expressing mice have a normal skeleton at birth but develop an osteopenic phenotype thereafter. Dynamic histomorphometric studies show that this phenotype is caused by a major decrease in the bone formation rate in the face of a normal number of osteoblasts thus indicating that once osteoblasts are differentiated Cbfa1 regulates their function. Molecular analyses reveal that the expression of the genes expressed in osteoblasts and encoding bone ECM proteins is nearly abolished in transgenic mice, and ex vivo assays demonstrated that DeltaCbfa1-expressing osteoblasts were less active than wild-type osteoblasts. We also show that Cbfa1 regulates positively the activity of its own promoter, which has the highest affinity Cbfa1-binding sites characterized. This study demonstrates that beyond its differentiation function Cbfa1 is the first transcriptional activator of bone formation identified to date and illustrates that developmentally important genes control physiological processes postnatally.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A complete physical map of Escherichia coli K-12 strain MG1655 was constructed by digesting chromosomal DNA with the infrequently cutting restriction enzymes NotI, SfiI and XbaI and separating the fragments by pulsed field gel electrophoresis. The map was used to compare six K-12 strains of E. coli. Although several differences were noted and localized, the map of MG1655 was representative of all the K-12 strains tested. The maps were also used to analyze chromosomal rearrangements in the E. coli strain MG1655. The spontaneous and UV induced frequencies of tandem duplication formation were measured at several loci distributed around the chromosome. The spontaneous duplication frequency varied from 10$\sp{-5}$ to 10$\sp{-3}$ and increased at least ten-fold following mild UV irradiation treatment. Duplications of several regions of the chromosome, including the serA region and the metE region, were mapped using pulsed field gel electrophoresis. Duplications of serA were found to be large, ranging in size from 600 kb to 2100 kb. Several of the duplications isolated at serA were caused by ectopic recombination between IS5 elements and between IS186 elements. Duplications of the metE region, however, were almost exclusively the result of ectopic recombination between ribosomal RNA cistrons. Duplication frequencies were determined at both serA and metE in wild type and mismatch repair mutant strains (mutL, mutS, uvrD and recF). Even though all of the mismatch repair mutations increased duplication frequency of metE, the largest increases were observed in the mutL and mutS strains. Duplication frequency of serA was increased less dramatically by mutations in mismatch repair. Several duplications of metE isolated in a wild type and a mismatch repair mutant were mapped. The results showed that the same repeated sequences were used for duplication formation in the mismatch repair mutant as were used in the wild type strain. Several isolates showed evidence of multiple rearrangements indicating that mismatch repair may play a role in stabilizing the genome by controlling chromosomal rearrangement. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rate and direction of fibroblast locomotion is regulated by the formation of lamellipodia. In turn, lamellipodal formation is modulated in part by adhesion of that region of the cell from which the lamellipodia will extend or orginate. Cell surface $\beta$1,4-galactosyltransferase (GalTase) is one molecule that has been demonstrated to mediate cellular interactions with extracellular matrices. In the case of fibroblasts, GalTase must be associated with the actin cytoskeleton in order to mediate cellular adhesion to laminin. The object of this study was to determine how altering the quantity of GalTase capable of associating with the cytoskeleton impacts cell motility. Stably transfected cell lines were generated that have increased or decreased levels of surface GalTase relative to its cytoskeleton-binding sites. Biochemical analyses of these cells reveals that there is a limited number of sites on the cytoskeleton with which GalTase can interact. Altering the ratio of GalTase to its cytoskeleton binding sites does not affect the cells' abilities to spread, nor does it affect the localization of cytoskeletally-bound GalTase. It does, however, appear to interfere with stress fiber bundling. Cells with altered GalTase:cytoskeleton ratios change their polarity of laminin more frequently, as compared to controls. Therefore, the ectopic expression of GalTase cytoplasmic domains impairs a cell's ability to control the placement of lamellipodia. Cells were then tested for their ability to respond to a directional stimulus, a gradient of platelet-derived growth factor (PDGF). It was found that the ability of a cell to polarize in response to a gradient of PDGF is directly proportional to the quantity of GalTase associated with its cytoskeleton. Finally, the rate of unidirectional cell migration on laminin was found to be directly dependent upon surface GalTase expression and is inversely related to the ability of surface GalTase to interact with the cytoskeleton. It is therefore proposed that cytoskeletal assembly and lamellipodal formation can be regulated by the altering the ratio of cytoplasmic domains for specific matrix receptors, such as GalTase, relative to their cytoskeleton-binding sites. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this research has been to study the molecular basis for chromosome aberration formation. Predicated on a variety of data, Mitomycin C (MMC)-induced DNA damage has been postulated to cause the formation of chromatid breaks (and gaps) by preventing the replication of regions of the genome prior to mitosis. The basic protocol for these experiments involved treating synchronized Hela cells in G(,1)-phase with a 1 (mu)g/ml dose of MMC for one hour. After removing the drug, cells were then allowed to progress to mitosis and were harvested for analysis by selective detachment. Utilizing the alkaline elution assay for DNA damage, evidence was obtained to support the conclusion that Hela cells can progress through S-phase into mitosis with intact DNA-DNA interstrand crosslinks. A higher level of crosslinking was observed in those cells remaining in interphase compared to those able to reach mitosis at the time of analysis. Dual radioisotope labeling experiments revealed that, at this dose, these crosslinks were associated to the same extent with both parental and newly replicated DNA. This finding was shown not to be the result of a two-step crosslink formation mechanism in which crosslink levels increase with time after drug treatment. It was also shown not to be an artefact of the double-labeling protocol. Using neutral CsCl density gradient ultracentrifugation of mitotic cells containing BrdU-labeled newly replicated DNA, control cells exhibited one major peak at a heavy/light density. However, MMC-treated cells had this same major peak at the heavy/light density, in addition to another minor peak at a density characteristic for light/light DNA. This was interpreted as indicating either: (1) that some parental DNA had not been replicated in the MMC treated sample or; (2) that a recombination repair mechanism was operational. To distinguish between these two possibilities, flow cytometric DNA fluorescence (i.e., DNA content) measurements of MMC-treated and control cells were made. These studies revealed that the mitotic cells that had been treated with MMC while in G(,1)-phase displayed a 10-20% lower DNA content than untreated control cells when measured under conditions that neutralize chromosome condensation effects (i.e., hypotonic treatment). These measurements were made under conditions in which the binding of the drug, MMC, was shown not to interfere with the stoichiometry of the ethidium bromide-mithramycin stain. At the chromosome level, differential staining techniques were used in an attempt to visualize unreplicated regions of the genome, but staining indicative of large unreplicated regions was not observed. These results are best explained by a recombinogenic mechanism. A model consistent with these results has been proposed.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Deficits in social cognition are prominent symptoms of many human psychiatric disorders, but the origin of such deficits remains largely unknown. To further current knowledge regarding the neural network mediating social cognition, the present research program investigated the individual contributions of two temporal lobe structures, the amygdala and hippocampal formation, and one frontal lobe region, the orbital frontal cortex (Areas 11 and 13), to primate social cognition. Based on previous research, we hypothesized that the amygdala, hippocampal formation and orbital frontal cortex contribute significantly to the formation of new social relationships, but less to the maintenance of familiar ones. ^ Thirty-six male rhesus macaques (Macaca mulatta) served as subjects, and were divided into four experimental groups: Neurotoxic amygdala lesion (A-ibo, n = 9), neurotoxic or aspiration orbital frontal cortex lesion (O, n = 9), neurotoxic hippocampal formation lesion (H-ibo, n = 9) or sham-operated control (C, n = 9). Six social groups (tetrads) were created, each containing one member from each experimental group. The effect of lesion on established social relationships was assessed during pre- and post-surgical unrestrained social interactions, whereas the effect of lesion on the formation of new relationships was assessed during an additional phase of post-surgical testing with shuffled tetrad membership. Results indicated that these three neural structures each contribute significantly to both the formation and maintenance of social relationships. Furthermore, the amygdala appears to primarily mediate normal responses to threatening social signals, whereas the orbital frontal cortex plays a more global role in social cognition by mediating responses to both threatening and affiliative social signals. By contrast, the hippocampal formation seems to contribute to social cognition indirectly by providing access to previous experience during social judgments. ^ These conclusions were further investigated with three experiments that measured behavioral and physiological (stress hormone) reactivity to threatening stimuli, and three additional experiments that measured subjects' ability to flexibly alter behavioral responses depending on the incentive value of a food reinforcer. Data from these six experiments further confirmed and strengthened the three conclusions originating from the social behavior experiments and, when combined with the current literature, helped to formulate a simple, but testable, theoretical model of primate social cognition. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lmx1b encodes a LIM-homeodomain transcription factor required for dorso-ventral (D-V) patterning in the mesenchyme of the vertebrate limb. In the absence of Lmx1b function, limbs exhibit a bi-ventral pattern indicating that Lmx1b is required for cells to adopt a dorsal cell fate. However, how Lmx1b specifies dorsal cell fates in the mesenchyme of the distal limb is unknown. Lmx1b is initially expressed throughout the dorsal and ventral limb bud mesenchyme, then becomes dorsally restricted around E10.5. At this stage, there is a sharp boundary between Lmx1b expressing and Lmx1b non-expressing cells. How the dorso-ventral Lmx1b expression boundary is formed and maintained is currently unknown. One mechanism that may contribute to establishing and/or maintaining the Lmx1b expression boundary is if the dorsal mesenchyme is a lineage-based compartment, where different groups of non-mingling cells are separated. Compartment formation has been proposed to rely on compartment-specific selector gene activity which functions to restrict cells to a compartment and specifies the identity of cells within that compartment. Based on the evidence that the dorsal limb identity relies on the expression of Lmx1b in the dorsal half of the limb mesenchyme, we hypothesized that Lmx1b might function as a dorsal limb bud mesenchyme selector gene to set up a dorsal compartment. To test this hypothesis, we developed an inducible CreERT2/ loxP based fate mapping approach that permanently marks Lmx1b wild-type and mutant cells and examined the distribution of their descendents in the developing limb. Our data is the first to show that dorso-ventral lineage compartments exist in the limb bud mesenchyme. Furthermore, Lmx1b is required for maintenance of the dorso-ventral compartment lineage boundary. The behavior of Lmx1b mutant cells that cross into the ventral mesenchyme, as well as previous chimera analysis in which mutant cells spread evenly in the ventral limb and form patches in the dorsal side, suggest that cell affinity differences prevent intermingling of dorsal and ventral cells. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Friedreich's ataxia is caused by the expansion of the GAA•TTC trinucleotide repeat sequence located in intron 1 of the frataxin gene. The long GAA•TTC repeats are known to form several non-B DNA structures including hairpins, triplexes, parallel DNA and sticky DNA. Therefore it is believed that alternative DNA structures play a role in the loss of mRNA transcript and functional frataxin protein in FRDA patients. We wanted to further elucidate the characteristics for formation and stability of sticky DNA by evaluating the structure in a plasmid based system in vitro and in vivo in Escherichia coli. The negative supercoil density of plasmids harboring different lengths of GAA•TTC repeats, as well as either one or two repeat tracts were studied in E. coli to determine if plasmids containing two long tracts (≥60 repeats) in a direct repeat orientation would have a different topological effect in vivo compared to plasmids that harbored only one GAA•TTC tract or two tracts of < 60 repeats. The experiments revealed that, in fact, sticky DNA forming plasmids had a lower average negative supercoil density (-σ) compared to all other control plasmids used that had the potential to form other non-B DNA structures such as triplexes or Z-DNA. Also, the requirements for in vitro dissociation and reconstitution of the DNA•DNA associated region of sticky DNA were evaluated. Results conclude that the two repeat tracts associate in the presence of negative supercoiling and MgCl 2 or MnCl2 in a time and concentration-dependent manner. Interaction of the repeat sequences was not observed in the absence of negative supercoiling and/or MgCl2 or in the presence of other monovalent or divalent cations, indicating that supercoiling and quite specific cations are needed for the association of sticky DNA. These are the first experiments studying a more specific role of supercoiling and cation influence on this DNA conformation. To support our model of the topological effects of sticky DNA in plasmids, changes in sticky DNA band migration was measured with reference to the linear DNA after treatment with increasing concentrations of ethidium bromide (EtBr). The presence of independent negative supercoil domains was confirmed by this method and found to be segregated by the DNA-DNA associated region. Sequence-specific polyamide molecules were used to test the effect of binding of the ligands to the GAA•TTC repeats on the inhibition of sticky DNA. The destabilization of the sticky DNA conformation in vitro through this binding of the polyamides demonstrated the first conceptual therapeutic approach for the treatment of FRDA at the DNA molecular level. ^ Thus, examining the properties of sticky DNA formed by these long repeat tracts is important in the elucidation of the possible role of sticky DNA in Friedreich's ataxia. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Candida albicans is the most common opportunistic fungal pathogen of humans. The balance between commensal and pathogenic C. albicans is maintained largely by phagocytes of the innate immune system. Analysis of transcriptional changes after macrophage phagocytosis indicates the C. albicans response is broadly similar to starvation, including up-regulation of alternate carbon metabolism. Systems known and suspected to be part of acetate/acetyl-CoA metabolism were also up-regulated, importantly the ACH and ACS genes, which manage acetate/acetyl-CoA interconversion, and the nine-member ATO gene family, thought to participate in transmembrane acetate transport and also linked to the process of environmental alkalinization. ^ Studies into the roles of Ach, Acs1 and Acs2 function in alternate carbon metabolism revealed a substantial role for Acs2 and lesser, but distinct roles, for Ach and Acs1. Deletion mutants were made in C. albicans and were phenotypically evaluated both in vitro and in vivo. Loss of Ach function resulted in mild growth defects on ethanol and acetate and no significant attenuation in virulence in a disseminated mouse model of infection. While loss of Acs1 did not produce any significant phenotypes, loss of Acs2 greatly impaired growth on multiple carbon sources, including glucose, ethanol and acetate. We also concluded that ACS1 and ACS2 likely comprise an essential gene pair. Expression analyses indicated that ACS2 is the predominant form under most growth conditions. ^ ATO gene function had been linked to the process of environmental alkalinization, an ammonium-mediated phenomenon described here first in C. albicans. During growth in glucose-poor, amino acid-rich conditions C. albicans can rapidly change its extracellular pH. This process was glucose-repressible and was accompanied by hyphal formation and changes in colony morphology. We showed that introduction of the ATO1G53D point mutant to C. albicans blocked alkalinization, as did over-expression of C. albicans ATO2, the only C. albicans ATO gene to lack the conserved N-terminal domain. A screen for alkalinization-deficient mutants revealed that ACH1 is essential for alkalinization. However, addition of acetate to the media restored alkalinization to the ach1 mutant. We proposed a model of ATO function in which Atos regulated the cellular co-export of ammonium and acetate. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Like other simple retroviruses the murine sarcoma virus ts110 (MuSVts110) displays an inefficient mode of genome splicing. But, unlike the splicing phenotypic of other retroviruses, the splicing event effected upon the transcript of MuSVts110 is temperature sensitive. Previous work in this laboratory has established that the conditionally defective nature of MuSVts110 RNA splicing is mediated in cis by features in the viral transcript. Here we show that the 5$\sp\prime$ splice site of the MuSVts110 transcript acts as a point of control of the overall splicing efficiency at both permissive and nonpermissive temperatures for splicing. We strengthened and simultaneously weakened the nucleotide structure of the 5$\sp\prime$ splice site in an attempt to elucidate the differential effects each of the two known critical splicing components which interact with the 5$\sp\prime$ splice site have on the overall efficiency of intron excision. We found that a transversion of the sixth nucleotide, resulting in the formation of a near-consensus 5$\sp\prime$ splice site, dramatically increased the overall efficiency of MuSVts110 RNA splicing and abrogated the thermosensitive nature of this splicing event. Various secondary mutations within this original transversion mutant, designed to selectively decrease specific splicing component interactions, lead to recovery of inefficient and thermosensitive splicing. We have further shown that a sequence of 415 nucleotides lying in the downstream exon of the viral RNA and hypothesized to act as an element in the temperature-dependent inhibition of splicing displays a functional redundancy throughout its length; loss and/or replacement of any one sequence of 100 nucleotides within this sequence does not, with one exception detailed below, diminish the degree to which MuSVts110 RNA is inhibited to splice at the restrictive temperature. One specific deletion, though, fortuitously juxtaposed and activated cryptic consensus splicing signals for the excision of a cryptic intron within the downstream exon and markedly potentiated--across a newly defined cryptic exon--the splicing event effected upon the upstream, native intron. We have exploited this mutant of MuSVts110 to further an understanding of the process of exon definition and intron definition and show that the polypyrimidine tract and consensus 3$\sp\prime$ splice site, as well as the 5$\sp\prime$ splice site, within the intron at the 3$\sp\prime$ flank of the defined exon are required for the exon's definition; implying that definition of the downstream intron is required for the in vivo definition of the proximal, upstream exon. Finally; we have shown, through the construction of heterologous mutants of MuSVts110 employing a foreign 3$\sp\prime$ end-forming sequence, that efficiency of transcript splicing can be increased--to a degree which abrogates its thermosensitive nature--in direct proportion to increasing proximity of the 3$\sp\prime$ end-forming signal to the terminal 3$\sp\prime$ splice site. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Regulation of cytoplasmic deadenylation, the first step in mRNA turnover, has direct impact on the fate of gene expression. AU-rich elements (AREs) found in the 3′ untranslated regions of many labile mRNAs are the most common RNA-destabilizing elements known in mammalian cells. Based on their sequence features and functional properties, AREs can be divided into three classes. Class I or class III ARE directs synchronous deadenylation, whereas class II ARE directs asynchronous deadenylation with the formation of poly(A)-intermediates. Through systematic mutagenesis study, we found that a cluster of five or six copies of AUUUA motifs forming various degrees of reiteration is the key feature dictating the choice between asynchronous versus synchronous deadenylation. A 20–30 nt AU-rich sequence immediately 5 ′ to this cluster of AUUUA motifs can greatly enhance its destabilizing ability and is an integral part of the AREs. These two features are the defining characteristics of class II AREs. ^ To better understand the decay mechanism of AREs, current methods have several limitations. Taking the advantage of tetracycline-regulated promoter, we developed a new transcriptional pulse strategy, Tet-system. By controlling the time and the amount of Tet addition, a pulse of RNA could be generated. Using this new system, we showed that AREs function in both growth- and density-arrested cells. The new strategy offers for the first time an opportunity to investigate control of mRNA deadenylation and decay kinetics in mammalian cells that exhibit physiologically relevant conditions. ^ As a member of heterogeneous nuclear RNA-binding protein, hnRNP D 0/AUF1 displays specific affinities for ARE sequences in vitro . But its in vivo function in ARE-mediated mRNA decay is unclear. AUF1/hnRNP D0 is composed of at least four isoforms derived by alternative RNA splicing. Each isoform exhibits different affinity for ARE sequence in vitro. Here, we examined in vivo effect of AUF1s/hnRNP D0s on degradation of ARE-containing mRNA. Our results showed that all four isoforms exhibit various RNA stabilizing effects in NIH3T3 cells, which are positively correlated with their binding affinities for ARE sequences. Further experiments indicated that AUF1/hnRNP D0 has a general role in modulating the stability of cytoplasmic mRNAs in mammalian cells. ^