3 resultados para fluorescence detection

em DigitalCommons@The Texas Medical Center


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Various airborne aldehydes and ketones (i.e., airborne carbonyls) present in outdoor, indoor, and personal air pose a risk to human health at present environmental concentrations. To date, there is no adequate, simple-to-use sampler for monitoring carbonyls at parts per billion concentrations in personal air. The Passive Aldehydes and Ketones Sampler (PAKS) originally developed for this purpose has been found to be unreliable in a number of relatively recent field studies. The PAKS method uses dansylhydrazine, DNSH, as the derivatization agent to produce aldehyde derivatives that are analyzed by HPLC with fluorescence detection. The reasons for the poor performance of the PAKS are not known but it is hypothesized that the chemical derivatization conditions and reaction kinetics combined with a relatively low sampling rate may play a role. This study evaluated the effect of absorption and emission wavelengths, pH of the DNSH coating solution, extraction solvent, and time post-extraction for the yield and stability of formaldehyde, acetaldehyde, and acrolein DNSH derivatives. The results suggest that the optimum conditions for the analysis of DNSHydrazones are the following. The excitation and emission wavelengths for HPLC analysis should be at 250nm and 500nm, respectively. The optimal pH of the coating solution appears to be pH 2 because it improves the formation of di-derivatized acrolein DNSHydrazones without affecting the response of the derivatives of the formaldehyde and acetaldehyde derivatives. Acetonitrile is the preferable extraction solvent while the optimal time to analyze the aldehyde derivatives is 72 hours post-extraction. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Autofluorescence imaging is used widely for diagnostic evaluation of various epithelial malignancies. Cancerous lesions display loss of autofluorescence due to malignant changes in epithelium and subepithelial stroma. Carcinoma of unknown primary site presents with lymph node or distant metastasis, for which the site of primary tumour is not detectable. We describe here the use of autofluorescence imaging for detecting a clinically innocuous appearing occult malignancy of the palate which upon pathological examination was consistent with a metastatic squamous cell carcinoma. CASE DESCRIPTION: A submucosal nodule was noted on the right posterior hard palate of a 59-year-old white female during clinical examination. Examination of this lesion using a multispectral oral cancer screening device revealed loss of autofluorescence at 405 nm illumination. An excisional biopsy of this nodule, confirmed the presence of a metastatic squamous cell carcinoma. Four years ago, this patient was diagnosed with metastatic squamous cell carcinoma of the right mid-jugular lymph node of unknown primary. She was treated with external beam irradiation and remained disease free until current presentation. CONCLUSION: This case illustrates the important role played by autofluorescence tissue imaging in diagnosing a metastatic palatal tumour that appeared clinically innocuous and otherwise would not have been biopsied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Apoptosis, a form of programmed cell death, is critical to homoeostasis, normal development, and physiology. Dysregulation of apoptosis can lead to the accumulation of unwanted cells, such as occurs in cancer, and the removal of needed cells or disorders of normal tissues, such as heart, neurodegenerative, and autoimmune diseases. Noninvasive detection of apoptosis may play an important role in the evaluation of disease states and response to therapeutic intervention for a variety of diseases. It is desirable to have an imaging method to accurately detect and monitor this process in patients. In this study, we developed annexin A5-conjugated polymeric micellar nanoparticles dual-labeled with a near-infrared fluorescence fluorophores (Cy7) and a radioisotope (111In), named as 111In-labeled annexin A5-CCPM. In vitro studies demonstrated that annexin A5-CCPM could strongly and specifically bind to apoptotic cells. In vivo studies showed that apoptotic tissues could be clearly visualized by both single photon emission computed tomography (SPECT) and fluorescence molecular tomography (FMT) after intravenous injection of 111In-labeled Annexin A5-CCPM in 6 different apoptosis models. In contrast, there was little signal in respective healthy tissues. All the biodistribution data confirmed imaging results. Moreover, histological analysis revealed that radioactivity count correlated with fluorescence signal from the nanoparticles, and both signals co-localized with the region of apoptosis. In sum, 111In-labeled annexin A5-CCPM allowed visualization of apoptosis by both nuclear and optical imaging techniques. The complementary information acquired with multiple imaging techniques should be advantageous in improving diagnostics and management of patients.