14 resultados para flavone dimer

em DigitalCommons@The Texas Medical Center


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ionotropic glutamate receptors are important excitatory neurotransmitter receptors in the mammalian central nervous system that have been implicated in a number of neuropathologies such as epilepsy, ischemia, and amyotrophic lateral sclerosis. Glutamate binding to an extracellular ligand binding domain initiates a series of structural changes that leads to the formation of a cation selective transmembrane channel, which consequently closes due to desensitization of the receptor. The crystal structures of the AMPA subtype of the glutamate receptor have been particularly useful in providing initial insight into the conformational changes in the ligand binding domain; however, these structures are limited by crystallographic constraint. To gain a clear picture of how agonist binding is coupled to channel activation and desensitization, it is essential to study changes in the ligand binding domain in a dynamic, physiological state. In this dissertation, a technique called Luminescence Resonance Energy Transfer was used to determine the conformational changes associated with activation and desensitization in a functional AMPA receptor (ÄN*-AMPA) that contains the ligand binding domain and transmembrane segments; ÄN*-AMPA has been modified such that fluorophores can be introduced at specific sites to serve as a readout of cleft closure or to establish intersubunit distances. Previous structural studies of cleft closure of the isolated ligand binding domain in conjunction with functional studies of the full receptor suggest that extent of cleft closure correlates with extent of activation. Here, LRET has been used to show that a similar relationship between cleft closure and activation is observed in the “full length” receptor showing that the isolated ligand binding domain is a good model of the domain in the full length receptor for changes within a subunit. Similar LRET investigations were used to study intersubunit distances specifically to probe conformational changes between subunits within a dimer in the tetrameric receptor. These studies show that the dimer interface is coupled in the open state, and decoupled in the desensitized state, similar to the isolated ligand binding domain crystal structure studies. However, we show that the apo state dimer interface is not pre-formed as in the crystal structure, hence suggesting a mechanism for functional transitions within the receptor based on LRET distances obtained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Enterococcus faecalis is a Gram-positive bacterium that lives as a commensal organism in the mammalian gastrointestinal tract, but can behave as an opportunistic pathogen. Our lab discovered that mutation of the eutK gene attenuates virulence of E. faecalis in the C. elegans model host. eutK is part of the ethanolamine metabolic pathway which was previously unknown in E. faecalis. I discovered the presence of two unique posttranscriptional regulatory features that control expression of eut locus genes. The first feature I found is an AdoCBL riboswitch, a cis-acting RNA regulatory element that acts as a positive regulator of gene expression. The second feature I discovered is a unique two-component system, EutVW. The EutV response regulator contains an ANTAR family domain, which binds RNA to trigger transcriptional antitermination. I determined that induction of expression of several genes in the eut locus is dependent on ethanolamine, AdoCBL and the two-component system. AdoCBL and ethanolamine are both required for induction of eut locus gene expression. Additionally, I discovered eutG is regulated by a unique mechanism of antitermination. Both the AdoCBL riboswitch and EutV response regulator control the expression of the downstream gene eutG. EutV potentially acts through a novel antitermination mechanism in which a dimer of EutV binds to a pair of mRNA stem loops forming an antitermination complex. My data show a unique mechanism by which two environmental signals are integrated by two different posttranscriptional regulators to regulate a single locus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Escherichia coli, cytokinesis is orchestrated by FtsZ, which forms a Z-ring to drive septation. Spatial and temporal control of Z-ring formation is achieved by the Min and nucleoid occlusion (NO) systems. Unlike the well-studied Min system, less is known about the anti-DNA guillotining NO process. Here, we describe studies addressing the molecular mechanism of SlmA (synthetic lethal with a defective Min system)-mediated NO. SlmA contains a TetR-like DNA-binding fold, and chromatin immunoprecipitation analyses show that SlmA-binding sites are dispersed on the chromosome except the Ter region, which segregates immediately before septation. SlmA binds DNA and FtsZ simultaneously, and the SlmA-FtsZ structure reveals that two FtsZ molecules sandwich a SlmA dimer. In this complex, FtsZ can still bind GTP and form protofilaments, but the separated protofilaments are forced into an anti-parallel arrangement. This suggests that SlmA may alter FtsZ polymer assembly. Indeed, electron microscopy data, showing that SlmA-DNA disrupts the formation of normal FtsZ polymers and induces distinct spiral structures, supports this. Thus, the combined data reveal how SlmA derails Z-ring formation at the correct place and time to effect NO.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sensory rhodopsins I and II (SRI and SRII) are visual pigment-like phototaxis receptors in the archaeon Halobacterium salinarum. The receptor proteins each consist of a single polypeptide that folds into 7 $\alpha$-helical membrane-spanning segments forming an internal pocket where the chromophore retinal is bound. They transmit signals to their tightly bound transducer proteins, HtrI and HtrII, respectively, which in turn control a phosphotransfer pathway modulating the flagellar motors. SRI-HtrI mediates attractant responses to orange-light and repellent responses to UV light, while SRII-HtrII mediates repellent response to blue light. Experiments were designed to analyze the molecular processes in the SR-Htr complexes responsible for receptor activation, which previously had been shown by our laboratory to involve proton transfer reactions of the retinylidene Schiff base in the photoactive site, transfer of signals from receptor to transducer, and signaling specificity by the receptor-transducer complex.^ Site-directed mutagenesis and laser-flash kinetic spectroscopy revealed that His-166 in SRI (i) plays a role in the proton transfers both to and from the Schiffbase, either as a structurally critical residue or possibly as a direct participant, (ii) is involved in the modulation of SIU photoreaction kinetics by HtrI, and (iii) modulates the pKa of Asp-76, an important residue in the photoactive site, through a long-distance electrostatic interaction. Computerized cell tracking and motion analysis demonstrated that (iv) His-166 is crucial in phototaxis signaling: a spectrum of substitutions either eliminate signaling or greatly perturb the activation process that produces attractant and repellent signaling states of the receptor.^ The signaling states of SRI are communicated to HtrI, whose oligomeric structure and conformational changes were investigated by engineered sulfhydryl probes. It was found that signaling by the SRI-HtrI complex involves reversible conformational changes within a preexisting HtrI dimer, which is likely accomplished through a slight winding or unwinding of the two HtrT monomers via their loose coiled coil association. To elucidate which domains of the Htr dimers confer specificity for interaction with SRI or SRII, chimeras of HtrI and HtrII were constructed. The only determinant needed for functional and specific interaction with SRI or SRII was found to be the four transmembrane segments of the HtrI or HtrII dimers, respectively. The entire cytoplasmic parts of HtrI and HtrII, which include the functionally important signaling and adaptation domains, were interchangeable.^ These observations support a model in which SRI and SRII undergo conformational changes coupled to light-induced proton transfers in their photoactive sites, and that lateral helix-helix interactions with their cognate transducers' 4-helix bundle in the membrane relay these conformational changes into different states of the Htr proteins which regulate the down-stream phosphotransfer pathway. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Membrane bound, respiratory nitrate reductase in Escherichia coli is composed of three subunits, αβγ. The active complex is anchored to the membrane by membrane-integrated γ subunit and can reduce nitrate to nitrite with membrane quinones, (ubiquinone or menaquinone) as physiological electron donors. The transfer of electrons through the complex is thought to involve the sequence: membrane quinols → b-type hemes (γ subunit) → Fe-S centers (β subunit) → molybdopterin (α subunit) → nitrate. The enzyme can be assayed with the artificial electron donor reduced methyl viologen (MVH) which transfers electrons directly to the molybdopterin cofactor. These studies have focused on the possible role of protein-bound menaquinone in the structure and function of this multisubunit complex. ^ Nitrate reductase was purified as two distinct forms; after solubilization of membrane proteins with detergents, purification rendered an αβγ complex (holoenzyme) which catalyzes nitrate reduction with MVH or the quinols analogs, menadiol and duroquinol, as electron donors. Alternatively, heat-treatment of the membranes in the absence of detergents and subsequent purification of the active enzyme produced an αβ complex, which reduces nitrate only with MVH as electron donor. The active αβ dimer was also separated from γ subunit by heat treatment of the holoenzyme. ^ Menaquinone-9 was isolated directly from the purified αβ complex, and identified by mass spectrometry. Based on the composition of the membrane quinone pool, it was concluded that menaquinone-9 is sequestered from the membrane pool in a specifically protein-bound form. ^ The role of the bound menaquinone in the structure-function of nitrate reductase was also investigated, along with its participation in UV-light inactivation of the enzyme. Menaquinone-depleted nitrate reductase from a menaquinone deficient mutant retained activity with all electron donors and it remained sensitive to UV inactivation. However, the MVH-nitrate reductase activity and the rate of UV inactivation of the enzyme were significantly reduced and the optical properties of the enzyme were modified by the absence of the bound menaquinone-9. ^ Menaquinone-9 is not absolutely required for electron transfer in nitrate reductase but it appears to be specifically-bound during assembly of the complex and to enhance the transfer of electrons through the complex. The possible plasticity of the functional electron transfer pathway in nitrate reductase is discussed. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Partially functional forms of iso-1-cytochrome c from Saccharomyces cerevisiae were obtained by replacements of the evolutionarily conserved proline 71 with valine, isoleucine and threonine (Ernst et.al.,1985). Pro-71 lies at the juncture of two short helical regions and is believed to be important for proper local polypeptide chain folding within the iso-1-cytochrome c structure.^ To study folding in the absence of intermolecular disulfide dimer formation the free sulfhydryl group of Cys-102 was modified in both wild type and mutant proteins with an alkylating reagent, methyl methanethiosulfonate. Spectral analysis of the wild type and mutant proteins shows that the native-like functional (or partially functional) folded structure of cytochrome c is retained in the chemically modified derivatives. The replacement of Pro-71 with valine, isoleucine or threonine reduces the intensity of the 696 nm absorbance band which is an indicator of the Met-80 ligation to the heme. Thermal stability and guanidine hydrochloride unfolding studies of the mutant proteins shows a destabilization of the protein as a result of mutation. The degree of destabilization depends on the chemical nature of the substituent amino acid in the mutant protiens.^ Kinetics of folding/unfolding reactions of the proteins were monitored by fluorescence changes using stopped flow mixing to obtain guanidine hydrochloride concentration jumps ending below, within, and above the transition zone. The replacement of Pro-71 alters the rate on one of the fastest phases, $\tau\sb3$, while the two other phases, $\tau\sb1$ & $\tau\sb2$, remain the same.^ Slow refolding kinetic studies indicate that replacement of Pro-71 does not completely eliminate the absorbance or fluorescence detected slow phases leading to the conclusion that Pro-71 is not involved in the generation of the slow phases in the folding kinetics of iso-1-cytochrome c.^ The alkaline conformational change involving the disappearance of the 696 nm absorbance band occurs with increasing pH in the alkaline pH region (Davis et al., 1974). The apparent pK of this conformational change in mutant proteins is shifted as much as two pH units compared to wild type. The equilibrium and kinetic data of alkaline transition for the wild type follows a simple mechanism proposed by Davis et al., (1974) for horse heart cytochrome c. A more complex mechanism is proposed for the behavior of the mutant proteins. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lodestar, a Drosophila maternal-effect gene, is essential for proper chromosome segregation during embryonic mitosis. Mutations in lodestar cause chromatin bridging in anaphase, preventing the sister chromatids from fully separating and leaving chromatin tangled at the metaphase plate. Drosophila lodestar protein was originally identified, in purified fractions of Drosophila Kc cell nuclear extracts, by its ability to suppress the generation of long RNA polymerase II transcripts. The human homolog of this protein (hLodestar) was cloned and studied in comparison to the Drosophila lodestar activities. The results of these studies show, similar to the Drosophila protein, hLodestar has dsDNA-dependent ATPase and transcription termination activity in vitro. hLodestar has also been shown to release RNA polymerase I and II stalled at a cyclobutane thymine dimer. Lodestar belongs to the SNF2 family of proteins, which are members of the DExH/D helicase super-family. The SNF2 family of proteins are believed to play a critical role in altering protein-DNA interactions in a variety of cellular contexts. We have recently isolated a human cDNA (hLodestar) that shares significant homology to the Drosophila lodestar gene. The 4.6 kb clone contains an open reading frame of 1162 amino acids, and shares 55% similarity and 46% identity to the Drosophila Lodestar protein sequence. Our studies looking for hLodestar interacting proteins revealed an association with CDC5L in the yeast two-hybrid system and co-immunoprecipitation experiments. CDC5L has been well documented to be a component of the spliceosome. Our data suggests hLodestar is involved in splicing through in vitro assembly and splicing reactions, in addition to its association with spliceosomes purified from HeLa nuclear extract. Although many other members of the DExH/D helicase super-family have been linked to splicing, this is the first SNF2 family member to be implicated in the splicing reaction. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stats (s&barbelow;ignal t&barbelow;ransducer and a&barbelow;ctivator of t&barbelow;ranscription) are latent transcription factors that translocate from the cytoplasm to nucleus. Constitutive activation of Stat3α by upstream oncoproteins and receptor tyrosine kinases has been found in many human tumors and tumor-derived cell lines and it is often correlated with the activation of ErbB-2. In order to explore the involvement of ErbB-2 in the activation of Stat3 and the mechanisms underlying this event, an erbB-2 point mutant was used as a model of a constitutively activated receptor. Phenylalanine mutations (Y-F) were made in the receptor's autophosphorylation sites and their ability to activate Stat3α was evaluated. Our results suggest that Stat3α and Janus tyrosine kinase 2 associates with ErbB-2 prior to tyrosine phosphorylation of the receptor and that full activation of Stat3α by ErbB-2 requires the participation of other non-receptor tyrosine kinases. Both Src and Jak2 kinases contribute to the activation of Stat3α while only Src binds to ErbB-2 only when the receptor is tyrosine phosphorylated. Our results also suggest that tyrosine 1139 may be important for Src SH2 domain association since a mutant lacking this tyrosine reduces the ability of the Src SH2 domain to bind to ErbB-2 and significantly decreases its ability to activate Stat3α. ^ In order to disrupt aberrant STAT3α activation which contributes to tumorigenesis, we sought small molecules which can specifically bind to the STAT3 SH2 domain, thereby abolishing its ability of being recruited into receptors, and also blocking the dimer formation required for STAT3α activation. A phosphopeptide derived from gp130 was found to have a high affinity to STAT3 SH2 domain, and we decided to use this peptide as the base for further modifications. A series of peptide based compounds were designed and tested using electrophoretic mobility shift assay and fluorescence polarization assay to evaluate their affinity to the STAT3 SH2 domain. Two promising compounds, DRIV-73C and BisPOM, were used for blocking STAT3α activity in cell culture. Either can successfully impair STAT3α activation induced by IL-6 stimulation in HepG2 cells. BisPOM proved to be the more effective in blocking STAT3α tyrosine phosphorylation in induced cells and tumor cell lines, and was the more potent in inhibiting STAT3 dependent cell growth. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is evidence that ultraviolet radiation (UVR) is increasing over certain locations on the Earth's surface. Of primary concern is the annual pattern of ozone depletion over Antarctica and the Southern Ocean. Reduction of ozone concentration selectively limits absorption of solar UV-B (290–320 nm), resulting in higher irradiance at the Earth's surface. The effects of ozone depletion on the human population and natural ecosystems, particularly the marine environment, are a matter of considerable concern. Indeed, marine plankton may serve as sensitive indicators of ozone depletion and UV-B fluctuations. Direct biological effects of UVR result from absorption of UV-B by DNA. Once absorbed, energy is dissipated by a variety of pathways, including covalent chemical reactions leading to the formation of photoproducts. The major types of photoproduct formed are cyclobutyl pyrimidine dimer (CPD) and pyrimidine(6-4)pyrimidone dimer [(6-4)PD]. Marine plankton repair these photoproducts using light-dependent photoenzymatic repair or nucleotide excision repair. The studies here show that fluctuations in CPD concentrations in the marine environment at Palmer Station, Antarctica correlate well with ozone concentration and UV-B irradiance at the Earth's surface. A comparison of photoproduct levels in marine plankton and DNA dosimeters show that bacterioplankton display higher resistance to solar UVR than phytoplankton in an ozone depleted environment. DNA damage in marine microorganisms was investigated during two separate latitudinal transects which covered a total range of 140°. We observed the same pattern of change in DNA damage levels in dosimeters and marine plankton as measured using two distinct quantitative techniques. Results from the transects show that differences in photosensitivity exist in marine plankton collected under varying UVR environments. Laboratory studies of Antarctic bacterial isolates confirm that marine bacterioplankton possess differences in survival, DNA damage induction, and repair following exposure to UVR. Results from DNA damage measurements during ozone season, along a latitudinal gradient, and in marine bacterial isolates suggest that changes in environmental UVR correlate with changes in UV-B induced DNA damage in marine microorganisms. Differences in the ability to tolerate UVR stress under different environmental conditions may determine the composition of the microbial communities inhabiting those environments. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dynein light chain 1 (DLC1) is a highly conserved and ubiquitously expressed protein which might have critical cellular function as total loss of DLC1 caused Drosophila embryonic death. Despite many proteins and RNAs interaction with it identified, DLC1's function(s) and regulation are largely unknown. Recently, DLC1 was identified as a physiological substrate of P21-activate kinase 1(Pak1) kinase from a human mammary cDNA library in a yeast-2-hybridization screening assay. Studies in primary human tumors and cell culture implicated that DLC1 could promote mammary cancerous phenotypes, and more importantly, Ser88 phosphorylation of DLC1by Pak1 kinase was found to be essential for DLC1's tumorigenic activities. Based on the above tissue culture studies, we hypothesized that Ser88 phosphorylation regulates DLC1. ^ To test this hypothesis, we generated two transgenic mouse models: MMTV-DLC1 and MMTV-DLC1-S88A mice with mammary specific expression of the DLC1 and DLC1-S88A cDNAs. Both of the transgenic mice mammary glands showed rare tumor incidence which indicated DLC1 alone may not be sufficient for tumorigenesis in vivo. However, these mice showed a significant alteration of mammary development. Mammary glands from the MMTV-DLC1 mice had hyperbranching and alveolar hyperplasia, with elevated cell proliferation. Intriguingly, these phenotypes were not seen in the mammary glands from the MMTV-S88A mice. Furthermore, while MMTV-DLC1 glands were normal during involution, MMTV-S88A mice showed accelerated mammary involution with increase apoptosis and altered expression of involution-associated genes. Further analysis of the MMTV-S88A glands showed they had increased steady state level of Bim protein which might be responsible for the early involution. Finally, our in vitro data showed that Ser88 phosphorylation abolished DLC1 dimer and consequently might disturb its interaction with Bim and destabilize Bim. ^ Collectively, our findings provided in vivo evidence that Ser88 phosphorylation of DLC1 can regulate DLC1's function. In addition, Ser88 phosphorylation might be critical for DLC1 dimer-monomer transition. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The hypermodified, hydrophobic 2-methylthio-N$\sp6$-(dimethylallyl)-adenosine (ms${2{\cdot}6}\atop1$A) residue occurs $3\sp\prime$ to the anticodon in tRNA species that read codons beginning with U. The first step (i$\sp6$A37 formation) of this modification is catalyzed by dimethylallyl diphosphate:tRNA dimethyallyltransferase (EC 2.5.1.8), which is the product of the miaA gene. Subsequent steps were proposed to be catalyzed by MiaB and MiaC enzymes to complete the ms${2{\cdot}6}\atop1$A37 modification. The study of functions of the ms${2{\cdot}6}\atop1$A37 is very important because this modified base is one of the best candidates for a role in global control in response to environmental stress. This dissertation describes the further delineation of functions of the ms${2{\cdot}6}\atop1$A37 modification in E. coli K-12 cells. This work provides significant information on functions of tRNA modifications in E. coli cells to adapt to stressful environmental conditions. Three hypotheses were tested in this work.^ The first hypothesis tested was that non-optimal translation processes cause increased spontaneous mutagenesis by the induction of SOS response in starving cells. To test this hypothesis, I measured spontaneous mutation rates of wild type cells and various mutant strains which are defective in tRNA modification, SOS response, or oxidative damage repair. I found that the miaA mutation acts as a mutator that increased Lac$\sp+$ reversion rates and Trp$\sp+$ reversion frequencies of the wild-type cells in starving conditions. However, the lexA3(Ind)(which abolishes the induction of SOS response) mutation abolished the mutator phenotype of the miaA mutant. The recA430 mutation, not other identified SOS genes, decreased the Lac$\sp+$ reversion to a less extent than that of the lexA3(Ind) mutation. These results suggest that RecA together with another unidentified SOS gene product are responsible for the process.^ The second hypothesis tested was that MiaA protein binds to full-length tRNA$\sp{\rm Phe}$ molecules in form of a protein dimer. To test this hypothesis, three versions of the MiaA protein and seven species of tRNA substrates were purified. Binding studies by gel mobility shift assays, filter binding assays and gel filtration shift assays support the hypothesis that MiaA protein binds to full-length tRNA$\sp{\rm Phe}$ as a protein dimer but as a monomer to the anticodon stem-and-loop. These results were further supported by using steady state enzyme kinetic studies.^ The third hypothesis tested in this work was that the miaB gene in E. coli exists and is clonable. The miaB::Tn10dCm insertion mutation of Salmonella typhimurium was transduced to E. coli K-12 cells by using P$\sb1$ and P$\sb{22}$ bacteriophages. The insertion was confirmed by HPLC analyses of nucleotide profiles of miaB mutants of E. coli. The insertion mutation was cloned and DNA sequences adjacent to the transposon were sequenced. These DNA sequences were 86% identical to the f474 gene at 14.97 min chromosome of E. coli. The f474 gene was then cloned by PCR from the wild-type chromosome of E. coli. The recombinant plasmid complemented the mutant phenotype of the miaB mutant of E. coli. These results support the hypothesis that the miaB gene of E. coli exists and is clonable. In summary, functions of the ms${2{\cdot}6}\atop1$A37 modification in E. coli cells are further delineated in this work in perspectives of adaptation to stressful environmental conditions and protein:tRNA interaction. (Abstract shortened by UMI.) ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Agrobacterium tumefaciens is a plant pathogen with the unique ability to export oncogenic DNA-protein complexes (T-complexes) to susceptible plant cells and cause crown gall tumors. Delivery of the T-complexes across the bacterial membranes requires eleven VirB proteins and VirD4, which are postulated to form a transmembrane transporter. This thesis examines the subcellular localization and oligomeric structure of the 87-kDa VirB4 protein, which is one of three essential ATPases proposed to energize T-complex transport and/or assembly. Results of subcellular localization studies showed that VirB4 is tightly associated with the cytoplasmic membrane, suggesting that it is a membrane-spanning protein. The membrane topology of VirB4 was determined by using a nested deletion strategy to generate random fusions between virB4 and the periplasmically-active alkaline phosphatase, $\sp\prime phoA$. Analysis of PhoA and complementary $\beta$-galactosidase reporter fusions identified two putative periplasmically-exposed regions in VirB4. A periplasmic exposure of one of these regions was further confirmed by protease susceptibility assays using A. tumefaciens spheroplasts. To gain insight into the structure of the transporter, the topological configurations of other VirB proteins were also examined. Results from hydropathy analyses, subcellular localization, protease susceptibility, and PhoA reporter fusion studies support a model that all of the VirB proteins localize at one or both of the bacterial membranes. Immunoprecipitation and Co$\sp{2+}$ affinity chromatography studies demonstrated that native VirB4 (87-kDa) and a functional N-terminally tagged HIS-VirB4 derivative (89-kDa) interact and that the interaction is independent of other VirB proteins. A $\lambda$ cI repressor fusion assay supplied further evidence for VirB4 dimer formation. A VirB4 dimerization domain was localized to the N-terminal third of the protein, as judged by: (i) transdominance of an allele that codes for this region of VirB4; (ii) co-retention of a His-tagged N-terminal truncation derivative and native VirB4 on Co$\sp{2+}$ affinity columns; and (iii) dimer formation of the N-terminal third of VirB4 fused to the cI repressor protein. Taken together, these findings are consistent with a model that VirB4 is topologically configured as an integral cytoplasmic membrane protein with two periplasmic domains and that VirB4 assembles as homodimers via an N-terminal dimerization domain. Dimer formation is postulated to be essential for stabilization of VirB4 monomers during T-complex transporter assembly. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Heterotrimeric G protein-mediated signal transduction is one of numerous means that cells utilize to respond to external stimuli. G proteins consist of α, β andγ subunits. Extracellular ligands bind to seven-transmembrane helix receptors, triggering conformational changes. This is followed by activation of coupled G proteins through the exchange of GDP for GTP on the Gα subunit. Once activated, Gα-GTP dissociates from the βγ dimer. Both of these two moieties can interact with downstream effectors, such as adenylyl cyclase, phospholipase C, phosphodiesterases, or ion channels, leading to a series of changes in cellular metabolism and physiology. ^ Neurospora crassa is a eukaryotic multicellular filamentous fungus, with asexual/vegetative and sexual phases to its life cycle. Three Gα (GNA-1, GNA-2, GNA-3) and one Gβ (GNB-1) proteins have been identified in this organism. This dissertation investigates GNA-1 and GNB-1 mediated signaling pathways in N. crassa. ^ GNA-1 was the first identified microbial Gα that belongs to a mammalian superfamily (Gαi). Deletion of GNA-1 leads to multiple defects in N. crassa. During the asexual cycle, Δgna-1 strains display a slower growth rate and delayed conidiation on solid medium. In the sexual cycle, the Δgna-1 mutant is male-fertile but female-sterile. Biochemical studies have shown that Δ gna-1 strains have lower adenosine 3′–5 ′ cyclic monophosphate (cAMP) levels than wild type under conditions where phenotypic defects are observed. In this thesis work, strains containing one of two GTPase-deficient gna-1 alleles (gna-1 R178C, gna-1Q204L) leading to constitutive activation of GNA-1 have been constructed and characterized. Activation of GNA-1 causes uncontrolled aerial hyphae proliferation, elevated sensitivity to heat and oxidative stresses, and lower carotenoid synthesis. To further study the function of GNA-1, constructs to enable expression of mammalian Gαi superfamily members were transformed into a Δ gna-1 strain, and complementation of Δgna-1 defects investigated. Gαs, which is not a member of Gα i superfamily was used as a control. These mammalian Gα genes were able to rescue the vegetative growth rate defect of the Δ gna-1 strain in the following order: Gαz > Gα o > Gαs > Gαt > Gαi. In contrast, only Gαo was able to complement the sexual defect of a Δgna-1 strain. With regard to the thermotolerance phenotype, none of the mammalian Gα genes restored the sensitivity to a wild type level. These results suggest that GNA-1 regulates two independent pathways during the vegetative and sexual cycles in N. crassa. ^ GNB-1, a G protein β subunit from N. crassa, was identified and its functions investigated in this thesis work. The sequence of the gnb-1 gene predicts a polypeptide of 358 residues with a molecular mass of 39.7 kDa. GNB-1 exhibits 91% identity to Cryphonectria parasitica CPGB-1, and also displays significant homology with human and Dictyostelium Gβ genes (∼66%). A Δ gnb-1 strain was constructed and shown to exhibit defects in asexual spore germination, vacuole number and size, mass accumulation and female fertility. A novel role for GNB-1 in regulation of GNA-1 and GNA-2 protein levels was also demonstrated. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aberrant activation of signal transduction pathways has long been linked to uncontrolled cell proliferation and the development of cancer. The activity of one such signaling module, the Mitogen-Activated Protein Kinase (MAPK) pathway, has been implicated in several cancer types including pancreatic, breast, colon, and lymphoid malignancies. Interestingly, the activation of MAP-Kinase-Kinase-Kinase proteins often leads to the additional activation of NF-κB, a transcription factor that acts as a cell survival signal through its control of antiapoptotic genes. We have investigated the role of a specific dimer form of the NF-κB transcription factor family, NF-κB1 (p50) homodimers, in its control of the proto-oncogene, Bcl-2, and we have identified the MEK/ERK (MAPK) signaling cascade as a mediator of NF-κB1 activity. ^ Two murine B cell lymphoma cell lines were used for these studies: LY-as, an apoptosis proficient line with low Bcl-2 protein expression and no nuclear NF-κB activity, and LY-ar, a nonapoptotic line with constitutive p50 homodimer activity and 30 times more Bcl-2 protein expression than LY-as. Experiments modulating p50 activity correlated the activation of p50 homodimers with Bcl-2 expression and additional gel shift experiments demonstrated that the Bcl-2 P1 promoter had NF-κB sites with which recombinant p50 was able to interact. In vitro transcription revealed that p50 enhanced the production of transcripts derived from the Bcl-2 P1 promoter. These data strongly suggest that Bcl-2 is a target gene for p50-mediated transcription and suggest that the activation of p50 homodimers contributes to the expression of Bcl-2 observed in LY-ar cells. ^ Studies of upstream MAPK pathways that could influence NF-κB activity demonstrated that LY-ar cells had phosphorylated ERK proteins while LY-as cells did not. Treatment of LY-ar cells with the MEK inhibitors PD 98059, U0126, and PD 184352 led to a loss of phosphorylated ERK, a reversal of nuclear p50 homodimer DNA binding, and a decrease in the amount of Bcl-2 protein expression. Similarly, the activation of the MEK/ERK pathway in LY-as cells by phorbol ester led to Bcl-2 expression that could be blocked by PD 98059. Furthermore, treatment of LY-ar cells with TNFα, an IKK activator, did not change the suppressive effect of PD 98059 on p50 homodimer activity, suggesting an IKK-independent pathway for p50 homodimer activation. Lastly, all three MEK inhibitors sensitized LY-ar cells to radiation-induced apoptosis. ^ These data indicate that the activation of the MEK/ERK MAP-Kinase signaling pathway acts upstream of p50 homodimer activation and Bcl-2 expression in this B cell lymphoma cell system and suggest that the activation of MEK/ERK may be a key step in the progression of lymphoma to advanced-staged disease. Other researchers have used MEK inhibitors to inhibit cell growth and sensitize a number of tumors to chemotherapies. In light of our data, MEK inhibitors may additionally be useful clinically to radiosensitize cancers of lymphoid origin. ^