5 resultados para finger feeding
em DigitalCommons@The Texas Medical Center
Resumo:
BACKGROUND: There is a continuous debate regarding the best bottle nipple to be used to enhance the bottle-feeding performance of a preterm infant. Aim: To verify that feeding performance can be improved by using the bottle nipple with the physical characteristics that enhance infants' sucking skills. METHODS: Ten "healthy" VLBW infants (941+/-273 g) were recruited. Feeding performance was monitored at two time periods, when taking 1-2 and 6-8 oral feedings/d. At each time and within 24 h, performance was monitored using three different bottle nipples offered in a randomized order. Rate of milk transfer (ml/min) was the primary outcome measure. The sucking skills monitored comprised stage of sucking, suction amplitude, and duration of the generated negative intraoral suction pressure. RESULTS: At both times, infants demonstrated a similar rate of milk transfer among all three nipples. However, the stage of sucking, suction amplitude, and duration of the generated suction were significantly different between nipples at 1-2, but not 6-8 oral feedings/d.CONCLUSION: We did not identify a particular bottle nipple that enhanced bottle feeding in healthy VLBW infants. Based on the notion that afferent sensory feedback may allow infants to adapt to changing conditions, we speculate that infants can modify their sucking skills in order to maintain a rate of milk transfer that is appropriate with the level of suck-swallow-breathe coordination achieved at a particular time. Therefore, it is proposed that caretakers should be more concerned over monitoring the coordination of suck-swallow-breathe than over the selection of bottle nipples.
Resumo:
AIM: Safe and successful oral feeding requires proper maturation of sucking, swallowing and respiration. We hypothesized that oral feeding difficulties result from different temporal development of the musculatures implicated in these functions. METHODS: Sixteen medically stable preterm infants (26 to 29 weeks gestation, GA) were recruited. Specific feeding skills were monitored as indirect markers for the maturational process of oral feeding musculatures: rate of milk intake (mL/min); percent milk leakage (lip seal); sucking stage, rate (#/s) and suction/expression ratio; suction amplitude (mmHg), rate and slope (mmHg/s); sucking/swallowing ratio; percent occurrence of swallows at specific phases of respiration. Coefficients of variation (COV) were used as indices of functional stability. Infants, born at 26/27- and 28/29-week GA, were at similar postmenstrual ages (PMA) when taking 1-2 and 6-8 oral feedings per day. RESULTS: Over time, feeding efficiency and several skills improved, some decreased and others remained unchanged. Differences in COVs between the two GA groups demonstrated that, despite similar oral feeding outcomes, maturation levels of certain skills differed. CONCLUSIONS: Components of sucking, swallowing, respiration and their coordinated activity matured at different times and rates. Differences in functional stability of particular outcomes confirm that maturation levels depend on infants' gestational rather than PMA.
Resumo:
The feeding behavior of Aplysia californica can be classically conditioned using tactile stimulation of the lips as a conditioned stimulus (CS) and food as an unconditioned stimulus (US). Moreover, several neural correlates of classical conditioning have been identified. The present study extended previous work by developing an in vitro analog of classical conditioning and by investigating pairing-specific changes in neuronal and synaptic properties. The preparation consisted of the isolated cerebral and buccal ganglia. Electrical stimulation of a lip nerve (AT4) and a branch of the esophageal nerve (En2) served as the CS and US, respectively. Three protocols were used: paired, unpaired, and US alone. Only the paired protocol produced a significant increase in CS-evoked fictive feeding. At the cellular level, classical conditioning enhanced the magnitude of the CS-evoked synaptic input to pattern-initiating neuron B31/32. In addition, paired training enhanced both the magnitude of the CS-evoked synaptic input and the CS-evoked spike activity in command-like neuron CBI-2. The in vitro analog of classical conditioning reproduced all of the cellular changes that previously were identified following behavioral conditioning and has led to the identification of several new learning-related neural changes. In addition, the pairing-specific enhancement of the CS response in CBI-2 indicates that some aspects of associative plasticity may occur at the level of the cerebral sensory neurons.
Resumo:
An important question in biology is to understand the role of specific gene products in regulating embryogenesis and cellular differentiation. Many of the regulatory proteins possess specific motifs, such as the homeodomain, basic helix-loop-helix structure, zinc finger, and leucine zipper. These sequence motifs participate in specific protein-DNA, protein-RNA, and protein-protein interactions, and are important for the function of these regulatory proteins.^ The human rfp (ret finger protein) belongs to a novel zinc finger protein family, the B box zinc finger family. Most of the B box proteins, including rfp, have a conserved tripartite motif, consisting of two novel zinc fingers (the RING finger and the B box) and a coiled-coil domain. Interestingly, a fusion protein between the tripartite motif of rfp and the tyrosine kinase domain of c-ret has transforming activity. In this study, we examined the expression of rfp during mouse development, and characterized the role of the tripartite motif in rfp function.^ We cloned the mouse rfp cDNA, which shares a 98.4% homology with the human sequence at amino acid level. Such strikingly high degree of homology indicates the high evolutionary pressure on the conservation of the sequence, suggesting that rfp may have an important function. Using the somatic cell hybrid system, we assigned the rfp gene to mouse chromosome 13 and human chromosome 6. Rfp transcripts and protein were ubiquitous in day 10.5-13.5 mouse embryos; however, they were restricted in adult mice, with the highest level of expression in the testis. Rfp expression in the testis is detected only in late pachytene spermatocytes and round spermatids. In both embryos and spermatogenic cells, rfp protein was distributed within cell nuclei in a punctate pattern, similar to the PODs (PML oncogenic domains) observed with another B box protein, PML. In cultured mammalian cells, we found that rfp was indeed co-localized to the PODs with PML. Using the yeast two-hybrid system, we showed that the rfp could specifically interact with PML, and that the interaction was dependent on the distal portion of the rfp coiled-coil domain.^ We also showed that rfp could form homodimers, and both the B box and coiled-coil domain were required for proper dimerization. It seems that the proximal portion of the coiled-coil domain provides the interacting interface, while the B box zinc finger orients the coil and maintains the correct structure of the whole molecule. Our data are consistent with the zinc-binding property and structural analysis of the B box. The RING finger seems to be involved in rfp nuclear localization through interaction with other proteins. We believe that homodimerization and interaction with PML are important for the normal interaction of rfp during development and differentiation. In addition, rfp homodimerization may also be essential for the oncogenic activation of the rfp-ret fusion protein. ^
Resumo:
Background. The increasing emphasis on medical outcomes and cost containment has made it imperative to identify patient populations in which aggressive nutritional care can improve quality of care. The aim of this prospective study was to implement a standardized early jejunal feeding protocol for patients undergoing small and large bowel resection, and to evaluate its effect on patient outcome and cost.^ Methods. Treatment patients (n = 81) who met protocol inclusion criteria had a jejunal feeding tube inserted at the time of surgery. Feeding was initiated at 10 cc/hour within 12 hours after bowel resection and progressed if hemodynamically stable. The control group (n = 159) received usual care. Outcome measures included postoperative length of stay, total direct cost, nosocomial infection rate and health status (SF-36) scores.^ Results. By postoperative day 4, the use of total parenteral nutrition (TPN) was significantly greater in the control group compared to the treatment group; however, total nutritional intake was significantly less. Multiple regression analysis indicated an increased likelihood of infection with the use of TPN. A reduction of 3.5 postoperative days (p =.013) with 4.3 fewer TPN days per patient (p =.001) and a 9.6% reduction in infection rate (p =.042) was demonstrated in the treatment group. There was no difference in health status scores between groups at discharge and 3 months post-discharge.^ Conclusion. These positive outcomes and an average total cost savings of $4,145 per treatment patient indicate that the treatment protocol was effective. ^