9 resultados para feed to gain ratio
em DigitalCommons@The Texas Medical Center
Resumo:
Food insecurity (FI) affects millions of people in the United States and is associated with medical problems, as well as poorer physical and emotional-behavioral adjustment. Failure to thrive is a condition where children fail to gain an appropriate amount of weight, and it can cause long-term effects on cognitive and psychomotor development. While the extent to which FI may contribute to FTT is unclear, FI may contribute both directly through inadequate caloric or nutrient intake and indirectly through increased family stress, parental depression and a chaotic family environment. We present an overview of how FI and FTT may interact, followed by a case study from our multidisciplinary clinic for children with FTT. The importance of screening for FI as well as FTT is discussed. We describe ways for individuals, organizations, and agencies to help reduce the effects of FI in both individuals and their communities.
Resumo:
Haldane (1935) developed a method for estimating the male-to-female ratio of mutation rate ($\alpha$) by using sex-linked recessive genetic disease, but in six different studies using hemophilia A data the estimates of $\alpha$ varied from 1.2 to 29.3. Direct genomic sequencing is a better approach, but it is laborious and not readily applicable to non-human organisms. To study the sex ratios of mutation rate in various mammals, I used an indirect method proposed by Miyata et al. (1987). This method takes advantage of the fact that different chromosomes segregate differently between males and females, and uses the ratios of mutation rate in sequences on different chromosomes to estimate the male-to-female ratio of mutation rate. I sequenced the last intron of ZFX and ZFY genes in 6 species of primates and 2 species of rodents; I also sequenced the partial genomic sequence of the Ube1x and Ube1y genes of mice and rats. The purposes of my study in addition to estimation of $\alpha$'s in different mammalian species, are to test the hypothesis that most mutations are replication dependent and to examine the generation-time effect on $\alpha$. The $\alpha$ value estimated from the ZFX and ZFY introns of the six primate specise is ${\sim}$6. This estimate is the same as an earlier estimate using only 4 species of primates, but the 95% confidence interval has been reduced from (2, 84) to (2, 33). The estimate of $\alpha$ in the rodents obtained from Zfx and Zfy introns is ${\sim}$1.9, and that deriving from Ube1x and Ube1y introns is ${\sim}$2. Both estimates have a 95% confidence interval from 1 to 3. These two estimates are very close to each other, but are only one-third of that of the primates, suggesting a generation-time effect on $\alpha$. An $\alpha$ of 6 in primates and 2 in rodents are close to the estimates of the male-to-female ratio of the number of germ-cell divisions per generation in humans and mice, which are 6 and 2, respectively, assuming the generation time in humans is 20 years and that in mice is 5 months. These findings suggest that errors during germ-cell DNA replication are the primary source of mutation and that $\alpha$ decreases with decreasing length of generation time. ^
Resumo:
Although the major metabolic pathways of cyclophosphamide are well established, the mechanism of antitumor drug selectivity is highly controversial. However, it is widely accepted that aldophosphamide, one of the primary metabolites, plays a crucial role in drug selectivity. In an attempt to gain a better understanding of the mechanism of selectivity of cyclophosphamide, a series of aldophosphamide analogs have been synthesized.^ The new analogs, unlike aldophosphamide, are relatively stable in neutral solution; however, they are converted rapidly to aldehydo intermediates in the presence of carboxylate esterase. Due to structural differences, these analogs may be classified into three different groups, arbitrarily designated as A, B, C, depending upon the facility with which the intermediate aldehydes form 4-hydroxy cyclic tautomers. The half-life of the aldehydo/4-hydroxy cyclic tautomeric mixture is longer for bis(acetoxy)aldophosphamide acetal I (a representative of group A), shorter for the n-ethyl analog III (B), and shortest for the N,N-dimethyl analog IV (C). The ratio of aldophosphamide: 4-hydroxycyclophosphamide at pseudoequilibrium is 1: 4 for compound I, 1: 2 for compound III and 0: 1 for compound IV. The therapeutic efficacy of these compounds are group A $>$ group B $>$ group C. It is apparent that the equilibrium position between the aldehydo and 4-hydroxy cyclic tautomers, which determines their stability, is a crucial determinant of both the cytotoxicity and antitumor selectivity. These findings, taken in conjunction with the aldehyde dehydrogenase selectivity hypothesis, may provide an explanation for the unique antitumor activity of cyclophosphamide. ^
Resumo:
Cytochrome P450 3As (CYP3As) are phase I enzymes responsible for metabolizing more than 50% of clinical drugs. Recent studies have revealed that expression of CYP3As is two-fold higher in women than in men leading to a faster metabolic clearance of therapeutic drugs in women. In this study, we analyzed the female specific rat CYP3A isoform, CYP3A9. We evaluated the effects of progesterone and estrogen on CYP3A9 regulation and showed a distinct role for estrogen in mediating female dominance of CYP3A9. We also observed changes in CYP3A9 expression at various stages of pregnancy which correlates well with varying physiological estradiol concentrations. In addition, by the in vitro data shows that estradiol mediated induction can be abrogated with estrogen receptor antagonist ICI182,780. We also identified three novel murine CYP3A isoforms CYP3A13, CYP3A41 and CYP3A44 and characterized their genomic structures and expression profiles. CYP3A41 and CYP3A44 show female specific expression but surprisingly this female dominance is not mediated via estrogen. Control male mice did not exhibit any CYP3A41 mRNA levels but showed minimal levels of CYP3A44. In order to gain insights into the governance ofαthe female specific genes, the hepatic regulation of CYP3A41 and CYP3A44 by the xeno-sensors PXR and CAR was examined. In female mice, pregnenolone-16α-carboxynitrile, suppressed CYP3A41 and CYP3A44 mRNA levels in PXR−/− background whereas dexamethasone-dependent suppression of CYP3A41 was mediated by PXR. In addition, phenobarbital challenge in PXR−/− revealed up-regulation of both CYP3A44, CYP3A41 levels only in males. No role for CAR was seen in the regulation of either CYP3A41 or CYP3A44 gene expression in female mice. Interestingly, PXR and CAR ligands induced male CYP3A44 levels in a receptor dependent fashion. This increase of CYP3A44 transcript in male mice is in contrast to the response seen in female mice, which clearly indicates an additional layer of regulation. Our findings suggest that gender plays a strategic role in directing the CAR/PXR mediated effects of CYP3A44/CYP3A41. This implies that differential regulation of female specific CYP3A isoforms may be the key to explain some of the gender differences observed in clearance of certain therapeutics like antidepressants and analgesics. ^
Resumo:
It is widely accepted that the process of breast cancer tumorigenesis involves estrogen receptor-alpha (ER)-regulated stimulatory pathways, which feed into survival, cell cycle progression and proliferative response. Recent data from Kumar laboratory indicate that dynein light chain 1 (DLC1) plays a role in survival, motility and invasiveness, all of which are required for a successful tumorigenesis process. In the present research, we have discovered a mechanistic bidirectional regulatory link between the DLC1 and ER. We found that DLC1 facilitates ligand-induced ER transactivation involving the recruitment of the DLC1-ER complex to ER-target genes. To gain insights into the mechanism by which DLC1 regulates the ER pathway, we set out to identify novel DLC1-interacting proteins. Among other proteins, we identified KIBRA and Ciz1 as two novel DLC1-interacting proteins. We found that the KIBRA-DLC1 complex is recruited to ER-responsive promoters, and that KIBRA-DLC1 interaction is needed for the recruitment of ER to its targets as well as for ER's transactivation function. Finally, we found that KIBRA utilizes its histone H3interacting glutamic acid-rich region to regulate the transactivation activity of ER. During the course of this work, we also discovered that DLC1 interacts with Cdk2 and Ciz1, and such interactions play a direct accelerating role in the G1-S transition of breast cancer cells. While delineating the role of Ciz1 in hormone-responsive cancer cells, we found that Ciz1 is an estrogen-responsive gene, and acts as a co-regulator of ER. Accordingly, Ciz1 overexpression in breast cancer cells conferred estrogen hypersensitivity, promoted the growth-rate, anchorage-independency and tumorigenic properties. Collectively, findings made during the course of the present dissertation research introduced two new molecular players in the action of ER in breast cancer cells, with a particular focus on cell cycle progression and ER-chromatin target regulation. In addition, findings presented here provide novel mechanistic insight about the contribution of DLC1 and its interacting proteins in amplifying the hormone action and promoting the process of breast cancer tumorigenesis. ^
Resumo:
Background. Nosocomial infections are a source of concern for many hospitals in the United States and worldwide. These infections are associated with increased morbidity, mortality and hospital costs. Nosocomial infections occur in ICUs at a rate which is five times greater than those in general wards. Understanding the reasons for the higher rates can ultimately help reduce these infections. The literature has been weak in documenting a direct relationship between nosocomial infections and non-traditional risk factors, such as unit staffing or patient acuity.^ Objective. To examine the relationship, if any, between nosocomial infections and non-traditional risk factors. The potential non-traditional risk factors we studied were the patient acuity (which comprised of the mortality and illness rating of the patient), patient days for patients hospitalized in the ICU, and the patient to nurse ratio.^ Method. We conducted a secondary data analysis on patients hospitalized in the Medical Intensive Care Unit (MICU) of the Memorial Hermann- Texas Medical Center in Houston during the months of March 2008- May 2009. The average monthly values for the patient acuity (mortality and illness Diagnostic Related Group (DRG) scores), patient days for patients hospitalized in the ICU and average patient to nurse ratio were calculated during this time period. Active surveillance of Bloodstream Infections (BSIs), Urinary Tract Infections (UTIs) and Ventilator Associated Pneumonias (VAPs) was performed by Infection Control practitioners, who visited the MICU and performed a personal infection record for each patient. Spearman's rank correlation was performed to determine the relationship between these nosocomial infections and the non-traditional risk factors.^ Results. We found weak negative correlations between BSIs and two measures (illness and mortality DRG). We also found a weak negative correlation between UTI and unit staffing (patient to nurse ratio). The strongest positive correlation was found between illness DRG and mortality DRG, validating our methodology.^ Conclusion. From this analysis, we were able to infer that non-traditional risk factors do not appear to play a significant role in transmission of infection in the units we evaluated.^
Resumo:
A 6-month-long, bench-scale simulation of an industrial wastewater stabilization pond (WSP) system was conducted to evaluate responses to several potential performance-enhancing treatments. The industrial WSP system consists of an anaerobic primary (1ry) WSP treating high-strength wastewater, followed by facultative secondary (2ry) and aerobic tertiary (3ry) WSPs in series treating lower-strength wastewater. The 1ry WSP was simulated with four glass aquaria which were fed with wastewater from the actual WSP system. The treatments examined were phosphorus supplementation (PHOS), phosphorus supplementation with pH control (PHOS+ALK), and phosphorus supplementation with pH control and effluent recycle (PHOS+ALK+RCY). The supplementary phosphorus treatment alone did not yield any significant change versus the CONTROL 1ry model pond. The average carbon to phosphorus ratio of the feed wastewater received from the WSP system was already 100:0.019 (i.e., 2,100 mg/l: 0.4 mg/l). The pH-control treatments (PHOS+ALK and PHOS+ALK+RCY) produced significant results, with 9 to 12 percent more total organic carbon (TOC) removal, 43 percent more volatile organic acid (VOA) generation, 78 percent more 2-ethoxyethanol and 14 percent more bis(2-chloroethyl)ether removal, and from 100- to 10,000-fold increases in bacterial enzyme activity and heterotrophic bacterial numbers. Recycling a 10-percent portion of the effluent yielded less variability for certain physicochemical parameters in the PHOS+ALK+RCY 1ry model pond, but overall there was no statistically-detectable improvement in performance versus no recycle. The 2ry and 3ry WSPs were also simulated in the laboratory to monitor the effect and fate of increased phosphorus loadings, as might occur if supplemental phosphorus were added to the 1ry WSP. Noticeable increases in algal growth were observed at feed phosphorus concentrations of 0.5 mg/l; however, there were no significant changes in the monitored physicochemical parameters. The effluent phosphorus concentrations from both the 2ry and 3ry model ponds did increase notably when feed phosphorus concentrations were increased from 0.5 to 1.0 mg/l. ^
Resumo:
Role of Neurogranin in the regulation of calcium binding to Calmodulin Anuja Chandrasekar, B.S Advisor: M. Neal Waxham, Ph.D The overall goal of my project was to gain a quantitative understanding of how the interaction between two proteins neurogranin (RC3) and calmodulin (CaM) alters a fundamental property of CaM. CaM, has been extensively studied for more than four decades due to its seminal role in almost all biological functions as a calcium signal transducer. Calcium signals in cardiac and neuronal cells are exquisitely precise and enable activation of some processes while down-regulating others. CaM, with its four calcium binding sites, serves as a central component of calcium signaling in these cells. It is aided in this role as a regulatory hub that differentially activates targets in response to a calcium flux by proteins that alter its calcium binding properties. Neurogranin, also known as RC3, is a member of a family of small neuronal IQ (SNIQ) domain proteins that was originally thought to play a ‘capacitive’ role by sequestering CaM until a calcium influx of sufficient intensity arrived. However, based on earlier work in our lab on neurogranin, we believe that this protein plays a more nuanced role in neurons than simply acting as a CaM buffer. We believe that neurogranin is one of the proteins which, by altering the kinetics of calcium binding allow CaM to decode a variety of signals with fine precision. To quantify the interaction between CaM, neurogranin and calcium, I used biophysical techniques and computational simulations. From my results, I conclude that neurogranin finely regulates the proportion of calcium-saturated CaM and thereby directs CaM’s target specificity.
Resumo:
Autophagy is an evolutionarily conserved process that functions to maintain homeostasis and provides energy during nutrient deprivation and environmental stresses for the survival of cells by delivering cytoplasmic contents to the lysosomes for recycling and energy generation. Dysregulation of this process has been linked to human diseases including immune disorders, neurodegenerative muscular diseases and cancer. Autophagy is a double edged sword in that it has both pro-survival and pro-death roles in cancer cells. Its cancer suppressive roles include the clearance of damaged organelles, which could otherwise lead to inflammation and therefore promote tumorigenesis. In its pro-survival role, autophagy allows cancer cells to overcome cytotoxic stresses generated the cancer environment or cancer treatments such as chemotherapy and evade cell death. A better understanding of how drugs that perturb autophagy affect cancer cell signaling is of critical importance toimprove the cancer treatment arsenal. In order to gain insights in the relationship between autophagy and drug treatments, we conducted a high-throughput drug screen to identify autophagy modulators. Our high-throughput screen utilized image based fluorescent microscopy for single cell analysis to identify chemical perturbants of the autophagic process. Phenothiazines emerged as the largest family of drugs that alter the autophagic process by increasing LC3-II punctae levels in different cancer cell lines. In addition, we observed multiple biological effects in cancer cells treated with phenothiazines. Those antitumorigenic effects include decreased cell migration, cell viability, and ATP production along with abortive autophagy. Our studies highlight the potential role of phenothiazines as agents for combinational therapy with other chemotherapeutic agents in the treatment of different cancers.