9 resultados para eye burning
em DigitalCommons@The Texas Medical Center
Resumo:
BACKGROUND: A key aspect of representations for object recognition and scene analysis in the ventral visual stream is the spatial frame of reference, be it a viewer-centered, object-centered, or scene-based coordinate system. Coordinate transforms from retinocentric space to other reference frames involve combining neural visual responses with extraretinal postural information. METHODOLOGY/PRINCIPAL FINDINGS: We examined whether such spatial information is available to anterior inferotemporal (AIT) neurons in the macaque monkey by measuring the effect of eye position on responses to a set of simple 2D shapes. We report, for the first time, a significant eye position effect in over 40% of recorded neurons with small gaze angle shifts from central fixation. Although eye position modulates responses, it does not change shape selectivity. CONCLUSIONS/SIGNIFICANCE: These data demonstrate that spatial information is available in AIT for the representation of objects and scenes within a non-retinocentric frame of reference. More generally, the availability of spatial information in AIT calls into questions the classic dichotomy in visual processing that associates object shape processing with ventral structures such as AIT but places spatial processing in a separate anatomical stream projecting to dorsal structures.
Resumo:
Tourette Syndrome begins in childhood and is characterized by uncontrollable repetitive actions like neck craning or hopping and noises such as sniffing or chirping. Worst in early adolescence, these tics wax and wane in severity and occur in bouts unpredictably, often drawing unwanted attention from bystanders. Making matters worse, over half of children with Tourette Syndrome also suffer from comorbid, or concurrent, disorders such as attention deficit hyperactivity disorder (ADHD) and obsessive-compulsive disorder (OCD). These disorders introduce anxious thoughts, impulsivity, inattention, and mood variability that further disrupt children with Tourette Syndrome from focusing and performing well at school and home. Thus, deficits in the cognitive control functions of response inhibition, response generation, and working memory have long been ascribed to Tourette Syndrome. Yet, without considering the effect of medication, age, and comorbidity, this is a premature attribution. This study used an infrared eye tracking camera and various computer tasks requiring eye movement responses to evaluate response inhibition, response generation, and working memory in Tourette Syndrome. This study, the first to control for medication, age, and comorbidity, enrolled 39 unmedicated children with Tourette Syndrome and 29 typically developing peers aged 10-16 years who completed reflexive and voluntary eye movement tasks and diagnostic rating scales to assess symptom severities of Tourette Syndrome, ADHD, and OCD. Children with Tourette Syndrome and comorbid ADHD and/or OCD, but not children with Tourette Syndrome only, took longer to respond and made more errors and distracted eye movements compared to typically-developing children, displaying cognitive control deficits. However, increasing symptom severities of Tourette Syndrome, ADHD, and OCD correlated with one another. Thus, cognitive control deficits were not specific to Tourette Syndrome patients with comorbid conditions, but rather increase with increasing tic severity, suggesting that a majority of Tourette Syndrome patients, regardless of a clinical diagnosis of ADHD and/or OCD, have symptoms of cognitive control deficits at some level. Therefore, clinicians should evaluate and counsel all families of children with Tourette Syndrome, with or without currently diagnosed ADHD and/or OCD, about the functional ramifications of comorbid symptoms and that they may wax and wane with tic severity.
Resumo:
Aniridia (AN) is a congenital, panocular disorder of the eye characterized by the complete or partial absence of the iris. The disease can occur in both the sporadic and familial forms which, in the latter case, is inherited as an autosomal dominant trait with high penetrance. The objective of this study was to isolate and characterize the genes involved in AN and Sey, and thereby to gain a better understanding of the molecular basis of the two disorders.^ Using a positional cloning strategy, I have approached and cloned from the AN locus in human chromosomal band 11p13 a cDNA that is deleted in two patients with AN. The deletions in these patients overlap by about 70 kb and encompass the 3$\sp\prime$ end of the cDNA. This cDNA detects a 2.7 kb mRNA encoded by a transcription unit estimated to span approximately 50 kb of genomic DNA. The message is specifically expressed in all tissues affected in all forms of AN, namely within the presumptive iris, lens, neuroretina, the superficial layers of the cornea, the olfactory bulbs, and the cerebellum. Sequence analysis of the AN cDNA revealed a number of motifs characteristic of certain transcription factors. Chief among these are the presence of the paired domain, the homeodomain, and a carboxy-terminal domain rich in serine, threonine and proline residues. The overall structure shows high homology to the Drosophila segmentation gene paired and members of the murine Pax family of developmental control genes.^ Utilizing a conserved human genomic DNA sequence as probe, I was able to isolate an embryonic murine cDNA which is over 92% homologous in nucleotide sequence and virtually identical at the amino acid level to the human AN cDNA. The expression pattern of the murine gene is the same as that in man, supporting the conclusion that it probably corresponds to the Sey gene. Its specific expression in the neuroectodermal component of the eye, in glioblastomas, but not in the neural crest-derived PC12 pheochromocytoma cell line, suggests that a defect in neuroectodermal rather mesodermal development might be the common etiological factor underlying AN and Sey. ^
Resumo:
Complex molecular events underlie vertebrate eye development and disease. The eye is composed of two major tissue types: the anterior and posterior segments. During development, the retinal progenitor cells differentiate into six neuronal and one non-neuronal cell types. These cell types later organize into the distinct laminar structure of the mature retina which occupies the posterior segment. In the developed anterior segment, both the ciliary body and trabecular meshwork regulate intraocular pressure created by the aqueous humor. The disruption in intraocular pressure can lead to a blinding condition called glaucoma. To characterize molecular mechanisms governing retinal development and glaucoma, two separate mouse knockout lines carrying mutations in math5 and myocilin were subjected to a series of in vivo analyses. ^ Math5 is a murine homologue of Drosophila atonal , a bHLH proneural gene essential for the formation of photoreceptor cells. The expression of math5 coincides with the onset of retinal ganglion cell differentiation. The targeted deletion of mouse math5 revealed that a null mutation inhibits the formation of a majority of the retinal ganglion cells. The mutation also interferes with the normal development of other retinal cell types such as amacrine, bipolar and photoreceptor cells. These results suggest that math5 is a proneural gene responsible for differentiation of retinal ganglion cells and may also have a role in normal development of other neuronal cell types within the retina. ^ Myocilin has two unique protein coding regions bearing homology to non-muscle myosin of Dictyostelium discoideum and to olfactomedin, an extracellular matrix molecule first described in the olfactory epithelium of the bullfrog. Recently, autosomal dominant forms of myocilin mutations have been found in individuals with primary open-angle glaucoma. The genetic linkage to glaucoma suggests a role of myocilin in normal intraocular pressure and ocular function. However, the analysis of mice heterozygous and homozygous for a targeted null mutation in myocilin indicates that it is dispensable for normal intraocular pressure or ocular function. Additionally, the lack of a discernable phenotype in both heterozygous and null mice suggests that haploinsufficiency is not a critical mechanism for MYOC-associated glaucoma in humans. Instead, disease-causing mutations likely act by gain of function. ^ In summary, these studies provide novel insights into the embryonic development of the vertebrate retina, and also begin to uncover the molecular mechanisms responsible for the pathogenesis of glaucoma. ^
Resumo:
Purpose. Fluorophotometry is a well validated method for assessing corneal permeability in human subjects. However, with the growing importance of basic science animal research in ophthalmology, fluorophotometry’s use in animals must be further evaluated. The purpose of this study was to evaluate corneal epithelial permeability following desiccating stress using the modified Fluorotron Master™. ^ Methods. Corneal permeability was evaluated prior to and after subjecting 6-8 week old C57BL/6 mice to experimental dry eye (EDE) for 2 and 5 days (n=9/time point). Untreated mice served as controls. Ten microliters of 0.001% sodium fluorescein (NaF) were instilled topically into each mouse’s left eye to create an eye bath, and left to permeate for 3 minutes. The eye bath was followed by a generous wash with Buffered Saline Solution (BSS) and alignment with the Fluorotron Master™. Seven corneal scans using the Fluorotron Master were performed during 15 minutes (1 st post-wash scans), followed by a second wash using BSS and another set of five corneal scans (2nd post-wash scans) during the next 15 minutes. Corneal permeability was calculated using data calculated with the FM™ Mouse software. ^ Results. When comparing the difference between the Post wash #1 scans within the group and the Post wash #2 scans within the group using a repeated measurement design, there was a statistical difference in the corneal fluorescein permeability of the Post-wash #1 scans after 5 days (1160.21±108.26 vs. 1000.47±75.56 ng/mL, P<0.016 for UT-5 day comparison 8 [0.008]), but not after only 2 days of EDE compared to Untreated mice (1115.64±118.94 vs. 1000.47±75.56 ng/mL, P>0.016 for UT-2 day comparison [0.050]). There was no statistical difference between the 2 day and 5 day Post wash #1 scans (P=.299). The Post-wash #2 scans demonstrated that EDE caused a significant NaF retention at both 2 and 5 days of EDE compared to baseline, untreated controls (1017.92±116.25, 1015.40±120.68 vs. 528.22±127.85 ng/mL, P<0.05 [0.0001 for both]). There was no statistical difference between the 2 day and 5 day Post wash #2 scans (P=.503). The comparison between the Untreated post wash #1 with untreated post wash #2 scans using a Paired T-test showed a significant difference between the two sets of scans (P=0.000). There is also a significant difference between the 2 day comparison and the 5 day comparison (P values = 0.010 and 0.002, respectively). ^ Conclusion. Desiccating stress increases permeability of the corneal epithelium to NaF, and increases NaF retention in the corneal stroma. The Fluorotron Master is a useful and sensitive tool to evaluate corneal permeability in murine dry eye, and will be a useful tool to evaluate the effectiveness of dry eye treatments in animal-model drug trials.^
Resumo:
Schizophrenia is the most prevalent mental disorder in the world, affecting approximately one percent of the population. Antipsychotic medications have successfully treated schizophrenic psychotic symptoms for years, however their positive effects on cognitive dysfunction, a core feature of schizophrenia, are inconclusive. Recent studies have shown that improved cognitive functioning is most often associated with the best long-term prognosis. Thus, clarifying the cognitive effects of commonly prescribed antipsychotic medications is pivotal to improving quality of life and long-term care of schizophrenic patients.^ Previous studies on cognitive dysfunction in schizophrenia utilized complex neuropsychological tasks requiring many intact areas of the brain for proper completion. These complexities make interpretation of acquired data difficult. Recently, eye movements have been identified as a more effective surrogate for investigating cognitive functioning. Eye movements are easily measured, require known discrete areas of the brain for processing, and are ubiquitous. They influence what we attend to and process in the brain; thus they are a pivotal aspect of cognitive functioning. This study sought to examine the effects of antipsychotic medications on eye movements in forty-two schizophrenic patients. These patients were divided equally into the three tested medication groups: haloperidol, olanzapine, and aripiprazole. To the extent possible, these groups were further separated into task-impaired and task-nonimpaired subgroups, and again analyzed. Clinical and neuropsychological scales were administered to assess clinical and eye movement changes.^ The results of this study found the olanzapine-treated group exhibited superior cognitive effects to the aripiprazole-treated group, who was superior to the haloperidol-treated group. Furthermore, upon subdivision into cognitively impaired and nonimpaired subgroups, both olanzapine-treated subgroups continued to show improvement, while only the aripiprazole-treated impaired subgroup showed cognitive benefit. The haloperidol-treated nonimpaired subgroup actually demonstrated worsening effects. Interestingly, despite the cognitive decline of some subgroups, the clinical assessment results indicated virtually all subgroups exhibited significant clinical improvement. Hence, careful selection of an antipsychotic medication is crucial, as this study shows some treatments may help whereas others may hinder cognitive functioning in schizophrenia. ^ The results of this study are extremely important given the relationship between cognitive improvement and long-term prognosis in schizophrenia. Finally, and perhaps most importantly, these results indicate that clinical improvement is not necessarily indicative of cognitive improvement. ^
Resumo:
Purpose. The measurement of quality of life has become an important topic in healthcare and in the allocation of limited healthcare resources. Improving the quality of life (QOL) in cancer patients is paramount. Cataract removal and lens implantation appears to improve patient well-being of cancer patients, though a formal measurement has never been published in the US literature. In this current study, National Eye Institute Visual Functioning Questionnaire (NEI-VFQ-25), a validated vision quality of life metric, was used to study the change in vision-related quality of life in cancer patients who underwent cataract extraction with intraocular lens implantation. ^ Methods. Under an IRB approved protocol, cancer patients who underwent cataract surgery with intraocular lens implantation (by a single surgeon) from December 2008 to March 2011, and who had completed a pre- and postoperative NEI-VFQ-25 were retrospectively reviewed. Post-operative data was collected at their routine 4-6 week post-op visit. Patients' demographics, cancer history, their pre and postoperative ocular examinations, visual acuities, and NEI-VFQ-25 with twelve components were included in the evaluation. The responses were evaluated using the Student t test, Spearman correlation and Wilcoxon signed rank test. ^ Results. 63 cases of cataract surgery (from 54 patients) from the MD Anderson Cancer Center were included in the study. Cancer patients had a significant improvement in the visual acuity (P<0.0001) postoperatively, along with a significant increase in vision-related quality of life (P<0.0001). Patients also had a statistically significant improvement in ten of the twelve subcategories which are addressed in the NEI-VFQ-25. ^ Conclusions. In our study, cataract extraction and intraocular implantation showed a significant impact on the vision-related quality of life in cancer patients. Although this study includes a small sample size, it serves as a positive pilot study to evaluate and quantify the impact of a surgical intervention on QOL in cancer patients and may help to design a larger study to measure vision related QOL per dollar spent for health care cost in cancer patients.^