4 resultados para external validation
em DigitalCommons@The Texas Medical Center
Resumo:
The main objective of this study was to determine the external validity of a clinical prediction rule developed by the European Multicenter Study on Human Spinal Cord Injury (EM-SCI) to predict the ambulation outcomes 12 months after traumatic spinal cord injury. Data from the North American Clinical Trials Network (NACTN) data registry with approximately 500 SCI cases were used for this validity study. The predictive accuracy of the EM-SCI prognostic model was evaluated using calibration and discrimination based on 231 NACTN cases. The area under the receiver-operating-characteristics curve (ROC) curve was 0.927 (95% CI 0.894 – 0.959) for the EM-SCI model when applied to NACTN population. This is lower than the AUC of 0.956 (95% CI 0.936 – 0.976) reported for the EM-SCI population, but suggests that the EM-SCI clinical prediction rule distinguished well between those patients in the NACTN population who were able to achieve independent ambulation and those who did not achieve independent ambulation. The calibration curve suggests that higher the prediction score is, the better the probability of walking with the best prediction for AIS D patients. In conclusion, the EM-SCI clinical prediction rule was determined to be generalizable to the adult NACTN SCI population.^
Resumo:
Breast cancer is the most common non-skin cancer and the second leading cause of cancer-related death in women in the United States. Studies on ipsilateral breast tumor relapse (IBTR) status and disease-specific survival will help guide clinic treatment and predict patient prognosis.^ After breast conservation therapy, patients with breast cancer may experience breast tumor relapse. This relapse is classified into two distinct types: true local recurrence (TR) and new ipsilateral primary tumor (NP). However, the methods used to classify the relapse types are imperfect and are prone to misclassification. In addition, some observed survival data (e.g., time to relapse and time from relapse to death)are strongly correlated with relapse types. The first part of this dissertation presents a Bayesian approach to (1) modeling the potentially misclassified relapse status and the correlated survival information, (2) estimating the sensitivity and specificity of the diagnostic methods, and (3) quantify the covariate effects on event probabilities. A shared frailty was used to account for the within-subject correlation between survival times. The inference was conducted using a Bayesian framework via Markov Chain Monte Carlo simulation implemented in softwareWinBUGS. Simulation was used to validate the Bayesian method and assess its frequentist properties. The new model has two important innovations: (1) it utilizes the additional survival times correlated with the relapse status to improve the parameter estimation, and (2) it provides tools to address the correlation between the two diagnostic methods conditional to the true relapse types.^ Prediction of patients at highest risk for IBTR after local excision of ductal carcinoma in situ (DCIS) remains a clinical concern. The goals of the second part of this dissertation were to evaluate a published nomogram from Memorial Sloan-Kettering Cancer Center, to determine the risk of IBTR in patients with DCIS treated with local excision, and to determine whether there is a subset of patients at low risk of IBTR. Patients who had undergone local excision from 1990 through 2007 at MD Anderson Cancer Center with a final diagnosis of DCIS (n=794) were included in this part. Clinicopathologic factors and the performance of the Memorial Sloan-Kettering Cancer Center nomogram for prediction of IBTR were assessed for 734 patients with complete data. Nomogram for prediction of 5- and 10-year IBTR probabilities were found to demonstrate imperfect calibration and discrimination, with an area under the receiver operating characteristic curve of .63 and a concordance index of .63. In conclusion, predictive models for IBTR in DCIS patients treated with local excision are imperfect. Our current ability to accurately predict recurrence based on clinical parameters is limited.^ The American Joint Committee on Cancer (AJCC) staging of breast cancer is widely used to determine prognosis, yet survival within each AJCC stage shows wide variation and remains unpredictable. For the third part of this dissertation, biologic markers were hypothesized to be responsible for some of this variation, and the addition of biologic markers to current AJCC staging were examined for possibly provide improved prognostication. The initial cohort included patients treated with surgery as first intervention at MDACC from 1997 to 2006. Cox proportional hazards models were used to create prognostic scoring systems. AJCC pathologic staging parameters and biologic tumor markers were investigated to devise the scoring systems. Surveillance Epidemiology and End Results (SEER) data was used as the external cohort to validate the scoring systems. Binary indicators for pathologic stage (PS), estrogen receptor status (E), and tumor grade (G) were summed to create PS+EG scoring systems devised to predict 5-year patient outcomes. These scoring systems facilitated separation of the study population into more refined subgroups than the current AJCC staging system. The ability of the PS+EG score to stratify outcomes was confirmed in both internal and external validation cohorts. The current study proposes and validates a new staging system by incorporating tumor grade and ER status into current AJCC staging. We recommend that biologic markers be incorporating into revised versions of the AJCC staging system for patients receiving surgery as the first intervention.^ Chapter 1 focuses on developing a Bayesian method to solve misclassified relapse status and application to breast cancer data. Chapter 2 focuses on evaluation of a breast cancer nomogram for predicting risk of IBTR in patients with DCIS after local excision gives the statement of the problem in the clinical research. Chapter 3 focuses on validation of a novel staging system for disease-specific survival in patients with breast cancer treated with surgery as the first intervention. ^
Resumo:
Lung cancer is the leading cause of cancer-related mortality in the US. Emerging evidence has shown that host genetic factors can interact with environmental exposures to influence patient susceptibility to the diseases as well as clinical outcomes, such as survival and recurrence. We aimed to identify genetic prognostic markers for non-small cell lung cancer (NSCLC), a major (85%) subtype of lung cancer, and also in other subgroups. With the fast evolution of genotyping technology, genetic association studies have went through candidate gene approach, to pathway-based approach, to the genome wide association study (GWAS). Even in the era of GWAS, pathway-based approach has its own advantages on studying cancer clinical outcomes: it is cost-effective, requiring a smaller sample size than GWAS easier to identify a validation population and explore gene-gene interactions. In the current study, we adopted pathway-based approach focusing on two critical pathways - miRNA and inflammation pathways. MicroRNAs (miRNA) post-transcriptionally regulate around 30% of human genes. Polymorphisms within miRNA processing pathways and binding sites may influence patients’ prognosis through altered gene regulation. Inflammation plays an important role in cancer initiation and progression, and also has shown to impact patients’ clinical outcomes. We first evaluated 240 single nucleotide polymorphisms (SNPs) in miRNA biogenesis genes and predicted binding sites in NSCLC patients to determine associations with clinical outcomes in early-stage (stage I and II) and late-stage (stage III and IV) lung cancer patients, respectively. First, in 535 early-stage patients, after correcting multiple comparisons, FZD4:rs713065 (hazard ratio [HR]:0.46, 95% confidence interval [CI]:0.32-0.65) showed a significant inverse association with survival in early stage surgery-only patients. SP1:rs17695156 (HR:2.22, 95% CI:1.44-3.41) and DROSHA:rs6886834 (HR:6.38, 95% CI:2.49-16.31) conferred increased risk of progression in the all patients and surgery-only populations, respectively. FAS:rs2234978 was significantly associated with improved survival in all patients (HR:0.59, 95% CI:0.44-0.77) and in the surgery plus chemotherapy populations (HR:0.19, 95% CI:0.07-0.46).. Functional genomics analysis demonstrated that this variant creates a miR-651 binding site resulting in altered miRNA regulation of FAS, providing biological plausibility for the observed association. We then analyzed these associations in 598 late-stage patients. After multiple comparison corrections, no SNPs remained significant in the late stage group, while the top SNP NAT1:rs15561 (HR=1.98, 96%CI=1.32-2.94) conferred a significantly increased risk of death in the chemotherapy subgroup. To test the hypothesis that genetic variants in the inflammation-related pathways may be associated with survival in NSCLC patients, we first conducted a three-stage study. In the discovery phase, we investigated a comprehensive panel of 11,930 inflammation-related SNPs in three independent lung cancer populations. A missense SNP (rs2071554) in HLA-DOB was significantly associated with poor survival in the discovery population (HR: 1.46, 95% CI: 1.02-2.09), internal validation population (HR: 1.51, 95% CI: 1.02-2.25), and external validation (HR: 1.52, 95% CI: 1.01-2.29) population. Rs2900420 in KLRK1 was significantly associated with a reduced risk for death in the discovery (HR: 0.76, 95% CI: 0.60-0.96) and internal validation (HR: 0.77, 95% CI: 0.61-0.99) populations, and the association reached borderline significance in the external validation population (HR: 0.80, 95% CI: 0.63-1.02). We also evaluated these inflammation-related SNPs in NSCLC patients in never smokers. Lung cancer in never smokers has been increasingly recognized as distinct disease from that in ever-smokers. A two-stage study was performed using a discovery population from MD Anderson (411 patients) and a validation population from Mayo Clinic (311 patients). Three SNPs (IL17RA:rs879576, BMP8A:rs698141, and STK:rs290229) that were significantly associated with survival were validated (pCD74:rs1056400 and CD38:rs10805347) were borderline significant (p=0.08) in the Mayo Clinic population. In the combined analysis, IL17RA:rs879576 resulted in a 40% reduction in the risk for death (p=4.1 × 10-5 [p=0.61, heterogeneity test]). We also validated a survival tree created in MD Anderson population in the Mayo Clinic population. In conclusion, our results provided strong evidence that genetic variations in specific pathways that examined (miRNA and inflammation pathways) influenced clinical outcomes in NSCLC patients, and with further functional studies, the novel loci have potential to be translated into clinical use.
Resumo:
Head and Neck Squamous Cell Carcinoma (HNSCC) is the sixth common malignancy in the world, with high rates of developing second primary malignancy (SPM) and moderately low survival rates. This disease has become an enormous challenge in the cancer research and treatments. For HNSCC patients, a highly significant cause of post-treatment mortality and morbidity is the development of SPM. Hence, assessment of predicting the risk for the development of SPM would be very helpful for patients, clinicians and policy makers to estimate the survival of patients with HNSCC. In this study, we built a prognostic model to predict the risk of developing SPM in patients with newly diagnosed HNSCC. The dataset used in this research was obtained from The University of Texas MD Anderson Cancer Center. For the first aim, we used stepwise logistic regression to identify the prognostic factors for the development of SPM. Our final model contained cancer site and overall cancer stage as our risk factors for SPM. The Hosmer-Lemeshow test (p-value= 0.15>0.05) showed the final prognostic model fit the data well. The area under the ROC curve was 0.72 that suggested the discrimination ability of our model was acceptable. The internal validation confirmed the prognostic model was a good fit and the final prognostic model would not over optimistically predict the risk of SPM. This model needs external validation by using large data sample size before it can be generalized to predict SPM risk for other HNSCC patients. For the second aim, we utilized a multistate survival analysis approach to estimate the probability of death for HNSCC patients taking into consideration of the possibility of SPM. Patients without SPM were associated with longer survival. These findings suggest that the development of SPM could be a predictor of survival rates among the patients with HNSCC.^