2 resultados para exceptionally

em DigitalCommons@The Texas Medical Center


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human pigmentation is a complex trait with the observed variation caused by the varied production of eumelanin (brown/black melanins) and phaeomelanin (red/yellow melanins) by the melanocytes. The melanocortin 1 receptor (MC1R), a G protein-coupled receptor expressed in the melanocytes, is a regulator eu- and phaeomelanin synthesis, and MC1R mutations causing skin and coat color changes are known in many mammals. To understand the role of MC1R in human pigmentation variation, I have sequenced the MC1R gene in 121 individuals sampled from world populations. In addition, I have sequenced the MC1R gene in common and pygmy chimpanzees, gorilla, orangutan, and baboon to study the evolution of MC1R and to infer the ancestral human MC1R sequence. The ancestral MC1R sequence is observed in all 25 African individuals studied, but at lower frequencies in the other populations examined, especially in East and Southeast Asians. The Arg163Gln variant is absent in the Africans studied, almost absent in Europeans, and at a low frequency in Indians, but is at an exceptionally high frequency (70%) in East and Southeast Asians. To further evaluate the role of MC1R variants in human pigmentation variation, I have combined these molecular evolution and population studies with functional assays on MC1R variants and primate MC1Rs. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Antibodies (Abs) to autoantigens and foreign antigens (Ags) mediate, respectively, various pathogenic and beneficial effects. Abs express enzyme-like nucleophiles that react covalently with electrophiles. A subpopulation of nucleophilic Abs expresses proteolytic activity, which can inactivate the Ag permanently. This thesis shows how the nucleophilicity can be exploited to inhibit harmful Abs or potentially protect against a virus. ^ Inactivation of pathogenic Abs from Hemophilia A (HA) patients by means of nucleophile-electrophile pairing was studied. Deficient factor VIII (FVIII) in HA subjects impairs blood coagulation. FVIII replacement therapy fails in 20-30% of HA patients due to production of anti-FVIII Abs. FVIII analogs containing electrophilic phosphonate group (E-FVIII and E-C2) were hypothesized to inactivate the Abs by reacting specifically and covalently with nucleophilic sites. Anti-FVIII IgGs from HA patients formed immune complexes with E-FVIII and E-C2 that remained irreversibly associated under conditions that disrupt noncovalent Ab-Ag complexes. The reaction induced irreversible loss of Ab anti-coagulant activity. E-FVIII alone displayed limited interference with coagulation. E-FVIII is a prototype reagent suitable for further development as a selective inactivator of pathogenic anti-FVIII Abs. ^ The beneficial function of Abs to human immunodeficiency virus type 1 (HIV-1) was analyzed. HIV-1 eludes the immune system by rapidly changing its coat protein structure. IgAs from noninfected subjects hydrolyzed gp120 and neutralized HIV-1 with modest potency by recognizing the gp120 421-433 epitope, a conserved B cell superantigenic region that is also essential for HIV-1 attachment to host cell CD4 receptors. An adaptive immune response to superantigens is generally prohibited due to their ability to downregulate B cells. IgAs from subjects with prolonged HIV-1 infection displayed improved catalytic hydrolysis of gp120 and exceptionally potent and broad neutralization of diverse CCR5-dependent primary HIV isolates attributable to recognition of the 421-433 epitope. This indicates that slow immunological bypass of the superantigenic character of gp120 is possible, opening the path to effective HIV vaccination. ^ My research reveals a novel route to inactivate pathogenic nucleophilic Abs using electrophilic antigens. Conversely, naturally occurring nucleophilic Abs may help impede HIV infection, and the Abs could be developed for passive immunotherapy of HIV infected subjects. ^