9 resultados para etch-and-rinse adhesive

em DigitalCommons@The Texas Medical Center


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to determine the effects of contamination with smoker's and non-smoker's saliva on the bond strength of resin composite to superficial dentin using different adhesive systems. The interfacial structure between the resin and dentin was evaluated for each treatment using environmental scanning electron microscopy (ESEM). Freshly extracted human molars were ground with 600-grit SiC paper to expose the superficial dentin. Adhesives [One-Up-Bond-F-Plus (OUFP) and Adper-Prompt-L-Pop (APLP)] and resin composite (TPHSpectrum) were bonded to the dentin (n = 8/group, 180 total specimens) under five surface conditions: control (adhesive applied following manufacturers' instructions); saliva, then 5-s air dry, then adhesive; adhesive, saliva, 5-s air dry; adhesive, saliva, 5-s water rinse, 5-s air dry (ASW group); and adhesive, saliva, 5-s water rinse, 5-s air dry, reapply adhesive (ASWA group). After storage in water at 37 degrees C for 24 h, the specimens were debonded under tension at a speed of 0.5 mm/min. ESEM photomicrographs of the dentin/adhesive interfaces were taken. Mean bond strength ranged from 8.1 to 24.1 MPa. Fisher's protected least significant difference (P = 0.05) intervals for critical adhesive, saliva, and surface condition differences were 1.3, 1.3, and 2.1 MPa, respectively. There were no significant differences in bond strength to dentin between contamination by smoker's and nonsmoker's saliva, but bond strengths were significantly different between adhesive systems, with OUFP twice as strong as APLP under almost all conditions. After adhesive application and contamination with either smoker's or nonsmoker's saliva followed by washing and reapplication of the adhesive (ASWA group), the bond strength of both adhesive systems was the same as that of the control group.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Staphylococcus aureus is an opportunistic bacterial pathogen that can infect humans and other species. It utilizes an arsenal of virulence factors to cause disease, including secreted and cell wall anchored factors. Secreted toxins attack host cells, and pore-forming toxins destroy target cells by causing cell lysis. S. aureus uses cell-surface adhesins to attach to host molecules thereby facilitating host colonization. The Microbial Surface Components Recognizing Adhesive Matrix Molecules (MSCRAMMs) are a family of cell-wall anchored proteins that target molecules like fibronectin and fibrinogen. The Serine-aspartate repeat (Sdr) proteins are a subset of staphylococcal MSCRAMMs that share similar domain organization. Interestingly, the amino-terminus, is composed of three immunoglobulin-folded subdomains (N1, N2, and N3) that contain ligand-binding activity. Clumping factors A and B (ClfA and ClfB) and SdrG are Sdr proteins that bind to fibrinogen (Fg), a large, plasma glycoprotein that is activated during the clotting cascade to form fibrin. In addition to recognizing fibrinogen, ClfA and ClfB can bind to other host ligands. Analysis of S. aureus strains that cause osteomyelitis led to the discovery of the bone-sialoprotein-binding protein (Bbp), an Sdr protein. Because several MSCRAMMs target more than one molecule, I hypothesized that Bbp may recognize other host proteins. A ligand screen revealed that the recombinant construct BbpN2N3 specifically recognizes human Fg. Surface plasmon resonance was used to determine the affinity of BbpN2N3 for Fg, and a dissociation constant of 540 nM was determined. Binding experiments performed with recombinant Fg chains were used to map the binding of BbpN2N3 to the Fg Aalpha chain. Additionally, Bbp expressed on the surface of Lactococcus lactis and S. aureus Newman bald mediated attachment of these bacteria to Fg Aalpha. To further characterize the interaction between the two proteins, isothermal titration calorimetry and inhibition assays were conducted with synthetic Fg Aalpha peptides. To determine the physiological implications of Bbp binding to Fg, the effect of Bbp on fibrinogen clotting was studied. Results show that Bbp binding to Fg inhibits the formation of fibrin. The consequences of this interaction are currently under investigation. Together, these data demonstrate that human Fg is a novel ligand for Bbp. This study indicates that the MSCRAMM Bbp may aid in staphylococcal attachment by targeting both an extracellular matrix and a blood plasma protein. The implications of these novel findings are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Attention has recently been drawn to Enterococcus faecium because of an increasing number of nosocomial infections caused by this species and its resistance to multiple antibacterial agents. However, relatively little is known about the pathogenic determinants of this organism. We have previously identified a cell-wall-anchored collagen adhesin, Acm, produced by some isolates of E. faecium, and a secreted antigen, SagA, exhibiting broad-spectrum binding to extracellular matrix proteins. Here, we analysed the draft genome of strain TX0016 for potential microbial surface components recognizing adhesive matrix molecules (MSCRAMMs). Genome-based bioinformatics identified 22 predicted cell-wall-anchored E. faecium surface proteins (Fms), of which 15 (including Acm) had characteristics typical of MSCRAMMs, including predicted folding into a modular architecture with multiple immunoglobulin-like domains. Functional characterization of one [Fms10; redesignated second collagen adhesin of E. faecium (Scm)] revealed that recombinant Scm(65) (A- and B-domains) and Scm(36) (A-domain) bound to collagen type V efficiently in a concentration-dependent manner, bound considerably less to collagen type I and fibrinogen, and differed from Acm in their binding specificities to collagen types IV and V. Results from far-UV circular dichroism measurements of recombinant Scm(36) and of Acm(37) indicated that these proteins were rich in beta-sheets, supporting our folding predictions. Whole-cell ELISA and FACS analyses unambiguously demonstrated surface expression of Scm in most E. faecium isolates. Strikingly, 11 of the 15 predicted MSCRAMMs clustered in four loci, each with a class C sortase gene; nine of these showed similarity to Enterococcus faecalis Ebp pilus subunits and also contained motifs essential for pilus assembly. Antibodies against one of the predicted major pilus proteins, Fms9 (redesignated EbpC(fm)), detected a 'ladder' pattern of high-molecular-mass protein bands in a Western blot analysis of cell surface extracts from E. faecium, suggesting that EbpC(fm) is polymerized into a pilus structure. Further analysis of the transcripts of the corresponding gene cluster indicated that fms1 (ebpA(fm)), fms5 (ebpB(fm)) and ebpC(fm) are co-transcribed, a result consistent with those for pilus-encoding gene clusters of other Gram-positive bacteria. All 15 genes occurred frequently in 30 clinically derived diverse E. faecium isolates tested. The common occurrence of MSCRAMM- and pilus-encoding genes and the presence of a second collagen-binding protein may have important implications for our understanding of this emerging pathogen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interaction of insulin with bovine aorta endothelial (BAE) cells has been studied to determine the effect of insulin on endothelial cells, and investigate the function of the insulin receptor in this cell type. BAE cell insulin receptor is similiar to insulin receptor in other cell types in the time to attain equilibrium binding, its physical properties in a solubilized assay system and affinity for insulin in the low nanomolar range. However, BAE cell insulin receptor has unusual properties in its interaction with insulin at 4$\sp\circ$C that include: (1) the inability to completely dissociate prebound $\sp{125}$I-insulin by dilution with excess insulin or acid rinse treatment, indicating that binding is not completely reversible (2) the inability to remove prebound insulin with trypsin and other proteases (3) the implication of disulfide complex formation during binding (4) the inability of pretreatment with trypsin to lower cell surface binding capacity and (5) the suppression of insulin binding by bacitracin. Interactions of insulin with the receptor at 37$\sp\circ$C showed that (1) BAE cells degrade insulin, but not as extensively as other cell types, and (2) an unusual biphasic interaction of insulin with the BAE cells is observed which is indicative of some regulatory mechanism which modulates binding affinity. Functional characterization of the BAE cell insulin receptor revealed that insulin-induced downregulation and phosphorylation of the receptor was observed, and the extent of these processes were comparable to that demonstrated in non-endothelial cell types. However, in contrast to other cell types, insulin did not stimulate deoxyglucose uptake in BAE cells. We were unable to confirm the receptor-mediated transport of insulin by the receptor across the endothelial cell monolayer as reported by a previous investigator. We could not demonstrate a role for the receptor to promote acute intracellular accumulation of insulin as postulated by several investigators. Thus, while BAE cell insulin receptor has many properties that are similiar to those in other cell types, it is distinctly different in its nondissociable binding at 4$\sp\circ$C, its interaction with insulin at 37$\sp\circ$C, and its functional role in the BAE cell. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The 14.5 kDa (galectin-1) and 31 kDa (galectin-3) lectins are the most well characterized members of a family of vertebrate carbohydrate-binding proteins known as the galectins. Evidence has been obtained implicating these galectins in events as diverse as cell-cell and cell-extracellular matrix interactions, growth regulation, transformation, differentiation, and programmed cell death. In the present study, sodium butyrate was found to be a potent inducer of galectin-1 in the KM12 human colon carcinoma cell line. Prior to treatment with butyrate this cell line expresses only galectin-3. These cells were utilized as an in vitro model system to study galectin expression as well as that of their endogenous ligands. The initial phase of this project involved the examination of the induction of galectin-1 by butyrate at the protein level. These studies indicated that galectin-1 induction by butyrate was relatively rapid reaching nearly maximal levels after only 24 hours. Additionally, the induction was found to be reversible upon the removal of butyrate and to precede the increase in expression of the well characterized differentiation marker, carcinoembryonic antigen (CEA). The second phase of this project involved the characterization of potential glycoprotein ligands for galectin-1 and galectin-3. This work demonstrated that the polylactosaminoglycan-containing glycoproteins laminin, CEA, and the lysosome-associated glycoproteins-1 and -2 (LAMPs-1 and -2) are capable of serving as ligands for both galectin-1 and -3. The third phase of this project involved the analysis of the induction of the galectin-1 promoter by butyrate. Through the analysis of deletion constructs transiently transfected into KM12 cells, the region of the galectin-1 promoter mediating a high level of induction by butyrate was localized primarily within a proximal portion of the promoter containing a CCAAT element and an Sp1 binding site. The CCAAT-binding activity in the KM12 nuclear extracts was subsequently dentified as NF-Y by gel shift analysis. These studies suggest that: (1) the galectins may be involved in modulating adhesive interactions in human colon carcinoma cells through the binding of several polylactosaminoglycans shown to play a role in adhesion and (2) high level induction of the galectin-1 promoter by butyrate can proceed through a discreet, proximal element containing an NF-Y-binding CCAAT box and an Sp1 site. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous studies from our lab have established that large molecular weight mucin glycoproteins are major apically-disposed components of mouse uterine epithelial cells in vitro (Valdizan et al., (1992) J. Cell. Physiol. 151:451-465). The present studies demonstrate that Muc-1 represents one of the apically-disposed mucin glycoproteins of mouse uterine epithelia, and that Muc-1 protein and mRNA expression are regulated in the peri-implantation stage mouse uterus by ovarian steroids. Muc-1 expression is high in the proestrous and estrous stages, and decreases during diestrous. Both Muc-1 protein and mRNA levels decline to barely detectable levels by day 4 of pregnancy, i.e., prior to the time of blastocyst attachment. In contrast, Muc-1 expression in the cervix and vagina is maintained during this same period. Delayed implantation was established in pregnant mice by ovariectomy and maintained by administration of exogenous progesterone. Initiation of implantation was triggered by coinjection of progesterone maintained mice with a nidatory dose of 17$\beta$-estradiol. Muc-1 levels in the uterine epithelia of progesterone maintained mice declined to similar low levels as observed on day 4 of normal pregnancy. Coinjection of estradiol did not alter Muc-1 expression suggesting that down-regulation of Muc-1 is a progesterone dominated event. This was confirmed in ovariectomized, non-pregnant mice which displayed stimulation of Muc-1 expression following 6 hr of estradiol injection. Estradiol stimulated Muc-1 expression was inhibited by the pure antiestrogen, ICI 164,384. While progesterone alone had no effect on Muc-1 expression, it antagonized estradiol action in this regard. Injection of pregnant mice with the antiprogestin, RU 486, a known implantation inhibitor, on day 3 of pregnancy restored high level expression of Muc-1 mRNA on day 4, indicating that down-regulation of Muc-1 is progesterone receptor-mediated. Muc-1 appears to function as an anti-adhesive molecule at the apical cell surface of mouse uterine epithelial cells. Treatment of polarized cultures of mouse uterine epithelial cells with O-sialoglycoprotein endopeptidase reduced mucin expression in vitro, by about 50%, and converted polarized uterine epithelia to a functionally receptive state. Similarly, ablation of Muc-1 in Muc-1 null mice resulted in polarized uterine epithelia that were functionally receptive as compared to their wild-type counterparts in vitro. Collectively, these data indicate that Muc-1 and other mucins function as anti-adhesive molecules and that reduction or removal of these molecules is a prerequisite for the generation of a receptive uterine state. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A detailed microdosimetric characterization of the M. D. Anderson 42 MeV (p,Be) fast neutron beam was performed using the techniques of microdosimetry and a 1/2 inch diameter Rossi proportional counter. These measurements were performed at 5, 15, and 30 cm depths on the central axis, 3 cm inside, and 3 cm outside the field edge for 10 $\times$ 10 and 20 $\times$ 20 cm field sizes. Spectra were also measured at 5 and 15 cm depth on central axis for a 6 $\times$ 6 cm field size. Continuous slowing down approximation calculations were performed to model the nuclear processes that occur in the fast neutron beam. Irradiation of the CR-39 was performed using a tandem electrostatic accelerator for protons of 10, 6, and 3 MeV and alpha particles of 15, 10, and 7 MeV incident energy on target at angles of incidence from 0 to 85 degrees. The critical angle as well as track etch rate and normal incidence diameter versus linear energy transfer (LET) were obtained from these measurements. The bulk etch rate was also calculated from these measurements. Dose response of the material was studied, and the angular distribution of charged particles created by the fast neutron beam was measured with CR-39. The efficiency of CR-39 was calculated versus that of the Rossi chamber, and an algorithm was devised for derivation of LET spectra from the major and minor axis dimensions of the observed tracks. The CR-39 was irradiated in the same positions as the Rossi chamber, and the derived spectra were compared directly. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cell adhesion is an intricate process involving adhesion promoting ligands such as laminin and fibronectin, surface receptors for these ligands and a complex interplay of metabolic and cytoskeletal events (Geiger, BBA 737:305, 1983). Although considerable effort has been directed towards studying adhesion molecules such as fibronectin (Fn), very little is known about the mechanisms regulating the complex process of adhesion.^ I chose to use a CHO adhesion variant clone called AD('v)F11 as a tool to study the various steps which may be involved in adhesion. AD('v)F11 cells unlike wild type (WT), do not adhere to Fn-coated substrata, but will adhere to substrata coated with other extracellular components (Harper and Juliano, J Cell Biol. 91:647, 1981). I have found that although AD('v)F11 cells can bind Fn-coated latex beads to the same extent as WT cells, AD('v)F11 cells also differed from WT cells in that they did not aggregate in the presence of Fn-beads nor internalize Fn-beads. The defect in bead induced cell aggregation and internalization seem to be specific to Fn since lectin coated beads could aggregate AD('v)F11 cells as well as WT cells, and AD('v)F11 cells can also readily internalize lectins. These observations suggest that the defect associated with AD('v)F11 cells is distal to the initial binding to Fn to its cell surface receptor. To further investigate the biochemical defect associated with AD('v)F11 cells, a panel of compounds were examined for their ability to correct the non-adhesive phenotype of AD('v)F11 cells. Among the compounds tested, only those known to increase intracellular cAMP levels were found to be effective in correcting the adhesion defect of F11CA11 cells, a subclone of AD('v)F11 cells.^ Since cAMP effects in eukaryotic cells are mediated through phosphorylation events by the cAMP-dependent protein kinase (cAdPK) system, the phosphorylation pattern and cAdPK system of the F11CA11 cells were analyzed. Comparison between the phosphorylation pattern of intact untreated F11CA11 and WT cells, revealed the presence of a 50 kd phosphoprotein(s) in WT cells but not in F11CA11 cells. Results presented in this dissertation strongly indicate that the adhesion defect in F11CA11 is associated to an altered type I cAdPK that can be corrected by raising intracellular cAMP levels. (Abstract shortened with permission of author.) ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cell-CAM 105 has been identified as a cell adhesion molecule (CAM) based on the ability of monospecific and monovalent anti-cell-CAM 105 antibodies to inhibit the reaggregation of rat hepatocytes. Although one would expect to find CAMs concentrated in the lateral membrane domain where adhesive interactions predominate, immunofluorescence analysis of rat liver frozen sections revealed that cell-CAM 105 was present exclusively in the bile canalicular (BC) domain of the hepatocyte. To more precisely define the in situ localization of cell-CAM 105, immunoperoxidase and electron microscopy were used to analyze intact and mechanically dissociated fixed liver tissue. Results indicate that although cell-CAM 105 is apparently restricted to the BC domain in situ, it can be detected in the pericanalicular region of the lateral membranes when accessibility to lateral membranes is provided by mechanical dissociation. In contrast, when hepatocytes were labeled following incubation in vitro under conditions used during adhesion assays, cell-CAM 105 had redistributed to all areas of the plasma membrane. Immunofluorescence analysis of primary hepatocyte cultures revealed that cell-CAM 105 and two other BC proteins were localized in discrete domains reminscent of BC while cell-CAM 105 was also present in regions of intercellular contact. These results indicate that the distribution of cell-CAM 105 under the experimental conditions used for cell adhesion assays differs from that in situ and raises the possibility that its adhesive function may be modulated by its cell surface distribution. The implications of these and other findings are discussed with regard to a model for BC formation.^ Analysis of molecular events involved in BC formation would be accelerated if an in vitro model system were available. Although BC formation in culture has previously been observed, repolarization of cell-CAM 105 and two other domain-specific membrane proteins was incomplete. Since DMSO had been used by Isom et al. to maintain liver-specific gene expression in vitro, the effect of this differentiation system on the polarity of these membrane proteins was examined. Based on findings presented here, DMSO apparently prolongs the expression and facilitates polarization of hepatocyte membrane proteins in vitro. ^