2 resultados para enzymatic hydrolysis

em DigitalCommons@The Texas Medical Center


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Mixed Function Oxidase System metabolizes a wide range of biochemicals including drugs, pesticides and steroids. Cytochrome P450 reductase is a key enzymatic component of this system, supplying reducing equivalents from NADPH to cytochrome P450. The electrons are shuttled through reductase via two flavin moieties: FAD and FMN. Although the exact mechanism of flavins action is not known, the enzymatic features of reductase greatly depleted of either FMN of FAD have been characterized. Additionally, flavin location within reductase has been proposed by homology and chemical modification studies. This study seeks to extend the flavin depletion analysis in a more controlled system by eliminating the proposed FMN binding domain with recombinant DNA techniques and biochemical analysis. Two P450 reductase cDNA clones containing only the FMN and NADPH binding domain were isolated, expressed and the protein products purified and analysed. This study confirms the proposed FAD binding site, role of FAD in electron shuttling pathway and provides new methods to study the FAD binding domain. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The focus of this thesis lies in the development of a sensitive method for the analysis of protein primary structure which can be easily used to confirm the DNA sequence of a protein's gene and determine the modifications which are made after translation. This technique involves the use of dipeptidyl aminopeptidase (DAP) and dipeptidyl carboxypeptidase (DCP) to hydrolyze the protein and the mass spectrometric analysis of the dipeptide products.^ Dipeptidyl carboxypeptidase was purified from human lung tissue and characterized with respect to its proteolytic activity. The results showed that the enzyme has a relatively unrestricted specificity, making it useful for the analysis of the C-terminal of proteins. Most of the dipeptide products were identified using gas chromatography/mass spectrometry (GC/MS). In order to analyze the peptides not hydrolyzed by DCP and DAP, as well as the dipeptides not identified by GC/MS, a FAB ion source was installed on a quadrupole mass spectrometer and its performance evaluated with a variety of compounds.^ Using these techniques, the sequences of the N-terminal and C-terminal regions and seven fragments of bacteriophage P22 tail protein have been verified. All of the dipeptides identified in these analysis were in the same DNA reading frame, thus ruling out the possibility of a single base being inserted or deleted from the DNA sequence. The verification of small sequences throughout the protein sequence also indicates that no large portions of the protein have been removed after translation. ^