11 resultados para environnement familial
em DigitalCommons@The Texas Medical Center
Resumo:
The Mendelian inheritance of genetic mutations can lead to adult-onset cardiovascular disease. Several genetic loci have been mapped for the familial form of Thoracic Aortic Aneurysms (TAA), and many causal mutations have been identified for this disease. Intracranial Aneurysms (ICA) also show linkage heterogeneity, but no mutations have been identified causing familial ICA alone. Here, we characterized a large family (TAA288) with an autosomal dominant pattern of inherited aneurysms. It is intriguing that female patients predominantly present with ICA and male patients predominantly with TAA in this family. To identify a causal mutation in this family, a genome-wide linkage analysis was previously performed on nine members of this family using the 50k GenChips Hind array from Affymetrix. This analysis eventually identified a single disease-segregating locus, on chromosome 5p15. We build upon this previous analysis in this study, hypothesizing that a genetic mutation inherited in this locus leads to the sex-specific phenotype of TAA and ICA in this family First we refined the boundaries of the 5p15 disease linked locus down to the genomic coordinates 5p15: 3,424,465- 6,312,925 (GRCh37/hg19 Assembly). This locus was named the TAA288 critical interval. Next, we sequenced candidate genes within the TAA288 critical interval. The selection of genes was simplified by the relatively small number of well-characterized genetic elements within the region. Seeking novel or rare disease-segregating variants, we initially observed a single point alteration in the metalloproteinase gene ADAMTS16 fulfilling this criteria. This variant was later classified as a low-frequency population polymorphism (rs72647757), but we continued to explore the potential role of the ADAMTS16 as the cause of disease in TAA288. We observed that fibroblasts cultured from TAA288 patients consistently upregulated the expression of this gene more strongly compared to matched control fibroblasts when treated with the cytokine TGF-β1, though there was some variation in the exact nature of this expression. We also observed evidence that this protein is expressed at elevated levels in aortic aneurysm tissue from patients with mutations in the gene TGFBR2 and Marfan syndrome, shown by immunohistochemical detection of this protein.
Resumo:
OBJECTIVE: This study sought to characterize the inflammatory infiltrate in ascending thoracic aortic aneurysm in patients with Marfan syndrome, familial thoracic aortic aneurysm, or nonfamilial thoracic aortic aneurysm. BACKGROUND: Thoracic aortic aneurysms are associated with a pathologic lesion termed "medial degeneration," which is described as a noninflammatory lesion. Thoracic aortic aneurysms are a complication of Marfan syndrome and can be inherited in an autosomal dominant manner of familial thoracic aortic aneurysm. METHODS: Full aortic segments were collected from patients undergoing elective repair with Marfan syndrome (n = 5), familial thoracic aortic aneurysm (n = 6), and thoracic aortic aneurysms (n = 9), along with control aortas (n = 5). Immunohistochemistry staining was performed using antibodies directed against markers of lymphocytes and macrophages. Real-time polymerase chain reaction analysis was performed to quantify the expression level of the T-cell receptor beta-chain variable region gene. RESULTS: Immunohistochemistry of thoracic aortic aneurysm aortas demonstrated that the media and adventitia from Marfan syndrome, familial thoracic aortic aneurysm, and sporadic cases had increased numbers of T lymphocytes and macrophages when compared with control aortas. The number of T cells and macrophages in the aortic media of the aneurysm correlated inversely with the patient's age at the time of prophylactic surgical repair of the aorta. T-cell receptor profiling indicated a similar clonal nature of the T cells in the aortic wall in a majority of aneurysms, whether the patient had Marfan syndrome, familial thoracic aortic aneurysm, or sporadic disease. CONCLUSION: These results indicate that the infiltration of inflammatory cells contributes to the pathogenesis of thoracic aortic aneurysms. Superantigen-driven stimulation of T lymphocytes in the aortic tissues of patients with thoracic aortic aneurysms may contribute to the initial immune response.
Resumo:
Mutations in smooth muscle cell (SMC)-specific isoforms of α-actin and β-myosin heavy chain, two major components of the SMC contractile unit, cause familial thoracic aortic aneurysms leading to acute aortic dissections (FTAAD). To investigate whether mutations in the kinase that controls SMC contractile function (myosin light chain kinase [MYLK]) cause FTAAD, we sequenced MYLK by using DNA from 193 affected probands from unrelated FTAAD families. One nonsense and four missense variants were identified in MYLK and were not present in matched controls. Two variants, p.R1480X (c.4438C>T) and p.S1759P (c.5275T>C), segregated with aortic dissections in two families with a maximum LOD score of 2.1, providing evidence of linkage of these rare variants to the disease (p = 0.0009). Both families demonstrated a similar phenotype characterized by presentation with an acute aortic dissection with little to no enlargement of the aorta. The p.R1480X mutation leads to a truncated protein lacking the kinase and calmodulin binding domains, and p.S1759P alters amino acids in the α-helix of the calmodulin binding sequence, which disrupts kinase binding to calmodulin and reduces kinase activity in vitro. Furthermore, mice with SMC-specific knockdown of Mylk demonstrate altered gene expression and pathology consistent with medial degeneration of the aorta. Thus, genetic and functional studies support the conclusion that heterozygous loss-of-function mutations in MYLK are associated with aortic dissections.
Resumo:
BACKGROUND AND PURPOSE: Familial aggregation of intracranial aneurysms (IA) strongly suggests a genetic contribution to pathogenesis. However, genetic risk factors have yet to be defined. For families affected by aortic aneurysms, specific gene variants have been identified, many affecting the receptors to transforming growth factor-beta (TGF-beta). In recent work, we found that aortic and intracranial aneurysms may share a common genetic basis in some families. We hypothesized, therefore, that mutations in TGF-beta receptors might also play a role in IA pathogenesis. METHODS: To identify genetic variants in TGF-beta and its receptors, TGFB1, TGFBR1, TGFBR2, ACVR1, TGFBR3, and ENG were directly sequenced in 44 unrelated patients with familial IA. Novel variants were confirmed by restriction digestion analyses, and allele frequencies were analyzed in cases versus individuals without known intracranial disease. Similarly, allele frequencies of a subset of known SNPs in each gene were also analyzed for association with IA. RESULTS: No mutations were found in TGFB1, TGFBR1, TGFBR2, or ACVR1. Novel variants identified in ENG (p.A60E) and TGFBR3 (p.W112R) were not detected in at least 892 reference chromosomes. ENG p.A60E showed significant association with familial IA in case-control studies (P=0.0080). No association with IA could be found for any of the known polymorphisms tested. CONCLUSIONS: Mutations in TGF-beta receptor genes are not a major cause of IA. However, we identified rare variants in ENG and TGFBR3 that may be important for IA pathogenesis in a subset of families.
Resumo:
Familial hemiplegic migraine type 1 (FHM1) is an autosomal dominant subtype of migraine with aura that is associated with hemiparesis. As with other types of migraine, it affects women more frequently than men. FHM1 is caused by mutations in the CACNA1A gene, which encodes the alpha1A subunit of Cav2.1 channels; the R192Q mutation in CACNA1A causes a mild form of FHM1, whereas the S218L mutation causes a severe, often lethal phenotype. Spreading depression (SD), a slowly propagating neuronal and glial cell depolarization that leads to depression of neuronal activity, is the most likely cause of migraine aura. Here, we have shown that transgenic mice expressing R192Q or S218L FHM1 mutations have increased SD frequency and propagation speed; enhanced corticostriatal propagation; and, similar to the human FHM1 phenotype, more severe and prolonged post-SD neurological deficits. The susceptibility to SD and neurological deficits is affected by allele dosage and is higher in S218L than R192Q mutants. Further, female S218L and R192Q mutant mice were more susceptible to SD and neurological deficits than males. This sex difference was abrogated by ovariectomy and senescence and was partially restored by estrogen replacement, implicating ovarian hormones in the observed sex differences in humans with FHM1. These findings demonstrate that genetic and hormonal factors modulate susceptibility to SD and neurological deficits in FHM1 mutant mice, providing a potential mechanism for the phenotypic diversity of human migraine and aura.
Resumo:
Any functionally important mutation is embedded in an evolutionary matrix of other mutations. Cladistic analysis, based on this, is a method of investigating gene effects using a haplotype phylogeny to define a set of tests which localize causal mutations to branches of the phylogeny. Previous implementations of cladistic analysis have not addressed the issue of analyzing data from related individuals, though in human studies, family data are usually needed to obtain unambiguous haplotypes. In this study, a method of cladistic analysis is described in which haplotype effects are parameterized in a linear model which accounts for familial correlations. The method was used to study the effect of apolipoprotein (Apo) B gene variation on total-, LDL-, and HDL-cholesterol, triglyceride, and Apo B levels in 121 French families. Five polymorphisms defined Apo B haplotypes: the signal peptide Insertion/deletion, Bsp 1286I, XbaI, MspI, and EcoRI. Eleven haplotypes were found, and a haplotype phylogeny was constructed and used to define a set of tests of haplotype effects on lipid and apo B levels.^ This new method of cladistic analysis, the parametric method, found significant effects for single haplotypes for all variables. For HDL-cholesterol, 3 clusters of evolutionarily-related haplotypes affecting levels were found. Haplotype effects accounted for about 10% of the genetic variance of triglyceride and HDL-cholesterol levels. The results of the parametric method were compared to those of a method of cladistic analysis based on permutational testing. The permutational method detected fewer haplotype effects, even when modified to account for correlations within families. Simulation studies exploring these differences found evidence of systematic errors in the permutational method due to the process by which haplotype groups were selected for testing.^ The applicability of cladistic analysis to human data was shown. The parametric method is suggested as an improvement over the permutational method. This study has identified candidate haplotypes for sequence comparisons in order to locate the functional mutations in the Apo B gene which may influence plasma lipid levels. ^
Resumo:
The genetic etiology of stroke likely reflects the influence of multiple loci with small effects, each modulating different pathophysiological processes. This research project utilized three analytical strategies to address the paucity of information related to the identification and characterization of genetic variation associated with stroke in the general population. ^ First, the general contribution of familial factors to stroke susceptibility was evaluated in a population-based sample of unrelated individuals. Increased risk of subclinical cerebral infarction was observed among individuals with a positive parental history of stroke. This association did not appear to be mediated by established stroke risk factors, specifically blood pressure levels or hypertension status. ^ The need to identify specific gene variation associated with stroke in the general population was addressed by evaluating seven candidate gene polymorphisms in a population-based sample of unrelated individuals. Three polymorphisms were significantly associated with increased subclinical cerebral infarction or incident clinical ischemic stroke risk. These relationships include the G-protein β3 subunit 825C/T polymorphism and clinical stroke in Whites, the lipoprotein lipase S/X447 polymorphism and subclinical and clinical stroke in men, and the angiotensin I-converting enzyme Ins/Del polymorphism and subclinical stroke in White men. These associations did not appear to be obfuscated by the stroke risk factors adjusted for in the analysis models specifically blood pressure levels or anti-hypertensive medication use. ^ The final research strategy considered, on a genome-wide scale, the idea that genetic variation may contribute to the occurrence of hypertension or stroke through a common etiologic pathway. Genomic regions were identified for which significant evidence of heterogeneity was observed among hypertensive sibpairs stratified by family history of stroke information. Regions identified on chromosome 15 in African Americans, and chromosome 13 in Whites and African Americans, suggest the presence of genes influencing hypertension and stroke susceptibility. ^ Insight into the role of genetics in stroke is useful for the potential early identification of individuals at increased risk for stroke and improved understanding of the etiology of the disease. The ultimate goal of these endeavors is to guide the development of therapeutic intervention and informed prevention to provide a lasting and positive impact on public health. ^
Resumo:
Thoracic aortic aneurysms and dissections (TAAD) are autosomal dominantly inherited in 19% of patients. Mapping studies determined that the disease is genetically heterogeneous with multiple loci and genetic mutations accounting for familial TAAD. However, regardless of the specific mutation, resulting pathology is consistently medial degeneration, characterized by increased proteoglycans and loss of elastic fibers. We tested the hypothesis that genetic mutations leading to familial TAAD alter common pathways in aortic smooth muscle cells (SMCs). Identification of mutations at R460 in TGFBR2 reveals a 5% contribution to TAAD, however downstream analysis of Smad2 phosphorylation in the TGF-β pathway is not commonly altered in familial or sporadic disease when compared to controls. Expression profiling using Illumina's Sentrix HumanRef 8 Expression Beadchip array was done on RNA isolated from SMCs explanted from 6 patients with inherited TAAD with no identified mutation and 3 healthy controls obtained from the International Institute for the Advancement of Medicine. Significant increases in expression of proteoglycan genes in patients' SMCs, specifically lumican, podocan, and decorin were confirmed using Q-PCR and tissue immunofluorescence. NCI's Ingenuity Pathway Analysis predicted alterations in the ERK, insulin receptor and SAPK/JNK pathways (p<0.001), which SMCs activate in response to cyclic stretch. Immunoblotting indicated increased phosphorylation of ERK and GSK-3β, a protein from the insulin receptor pathway, in explanted patient SMCs, also confirmed by increased immunoreactivity against phosphorylated ERK and GSK-3β in the sub-intimal SMCs from patient tissue compared to controls. To determine if mechanotransduction pathway activation was responsible for the medial degeneration a specific inhibitor of GSK-3β, SB216763 was incubated with control cells and significantly increased the expression levels of proteoglycans. Mechanical strain was also applied to control SMCs confirming pathways stimulation with stretch. Incubation with pathway inhibitors against insulin receptor and ERK pathways identify, for the first time that stretch induced GSK-3β phosphorylation may increase proteoglycan expression, and ERK phosphorylation may regulate the expression of MMP2, a protein known to degrade elastic fibers. Furthermore, specific mutations in SMC-specific β-myosin heavy chain and α-actin, in addition to upregulation of pathways activated by cyclic stretch suggest that SMC response to hemodynamic factors, play a role in this disease. ^
Resumo:
Although many family-based genetic studies have collected dietary data, very few have used the dietary information in published findings. No single solution has been presented or discussed in the literature to deal with the problem of using factor analyses for the analyses of dietary data from several related individuals from a given household. The standard statistical approach of factor analysis cannot be applied to the VIVA LA FAMILIA Study diet data to ascertain dietary patterns since this population consists of three children from each family, thus the dietary patterns of the related children may be correlated and non-independent. Addressing this problem in this project will enable us to describe the dietary patterns in Hispanic families and to explore the relationships between dietary patterns and childhood obesity. ^ In the VIVA LA FAMILIA Study, an overweight child was first identified and then his/her siblings and parents were brought in for data collection which included 24 hour recalls and food frequency questionnaire (FFQ). Dietary intake data were collected using FFQ and 24 hour recalls on 1030 Hispanic children from 319 families. ^ The design of the VIVA LA FAMILIA Study has important and unique statistical considerations since its participants are related to each other, the majority form distinct nuclear families. Thus, the standard approach of factor analysis cannot be applied to these diet data to ascertain dietary patterns. In this project we propose to investigate whether the determinants of the correlation matrix of each family unit will allow us to adjust the original correlation matrix of the dietary intake data prior to ascertaining dietary intake patterns. If these methods are appropriate, then in the future the dietary patterns among related individuals could be assessed by standard orthogonal principal component factor analysis.^
Resumo:
It is well recognized that offspring of women with epilepsy who are taking anticonvulsant medications have an increased incidence of clefting abnormalities. This increase has been attributed to the teratogenic effects of anticonvulsant medications but an alternative explanation involving a genetic association of epilepsy and clefting has also been proposed. Five family studies attempting to resolve this controversy have been inconclusive either because of study design or analytic limitations. This family study was designed to determine whether epilepsy aggregates in families ascertained by an individual with a clefting disorder. The Mayo Clinic medical linkage registry was used to identify individuals with cleft lip with or without cleft palate and cleft palate in southeast Minnesota from 1935-1986. Only those cases who were 15 years or younger during this period were included in the study. The proband's parents and descendants of their parents, including the proband's sibs, children, grandchildren, niece/nephews, grandnieces/nephews, halfsibs and spouses were also identified and all of their medical records were reviewed for seizure disorders. The standardized morbidity ratios for epilepsy of 0.9 (95% CI 0.2-2.6) observed for first degree relatives (excluding parents) and 0.0 for second degree relatives were not increased. The SMRs ranged from 0.7-2.2 for the individual relative types (parents 1.5, sibs 0.7, children 2.2, probands 1.1, spouses 2.0) and were also not increased. These results do not support the suggestions of some that clefting and epilepsy aggregate together in families. ^
Resumo:
The purpose of this study was to determine the effects of nutrient intake, genetic factors and common household environmental factors on the aggregation of fasting blood glucose among Mexican-Americans in Starr County, Texas. This study was designed to determine: (a) the proportion of variation of fasting blood glucose concentration explained by unmeasured genetic and common household environmental effects; (b) the degree of familial aggregation of measures of nutrient intake; and (c) the extent to which the familial aggregation of fasting blood glucose is explained by nutrient intake and its aggregation. The method of path analysis was employed to determine these various effects.^ Genes play an important role in fasting blood glucose: Genetic variation was found to explain about 40% of the total variation in fasting blood glucose. Common household environmental effects, on the other hand, explained less than 3% of the variation in fasting blood glucose levels among individuals. Common household effects, however, did have significant effects on measures of nutrient intake, though it explained only about 10% of the total variance in nutrient intake. Finally, there was significant familial aggregation of nutrient intake measures, but their aggregation did not contribute significantly to the familial aggregation of fasting blood glucose. These results imply that similarities among relatives for fasting blood glucose are not due to similarities in nutrient intake among relatives. ^