3 resultados para ends-in-view
em DigitalCommons@The Texas Medical Center
Resumo:
The progression of hormone responsive to hormone refractory prostate cancer poses a major clinical challenge in the successful treatment of prostate cancer. The hormone refractory prostate cancer cells exhibit resistance not only to castrate levels of testosterone, but also to other therapeutic modalities and hence become lethal. Currently, there is no effective treatment available for managing this cancer. These observations underscore the urgency to investigate mechanism(s) that contribute to the progression of hormone-responsive to hormone-refractory prostate cancer and to target them for improved clinical outcomes. Tissue transglutaminase (TG2) is a multifunctional pro-inflammatory protein involved in diverse physiological processes such as inflammation, tissue repair, and wound healing. Its expression is also implicated in pathological conditions such as cancer and fibrosis. Interestingly, we found that the androgen-independent prostate cancer cell lines, which lacked androgen receptor (AR) expression, contained high basal levels of tissue transglutaminase. Inversely, the cell lines that expressed androgen receptor lacked transglutaminase expression. This attracted our attention to investigate the possible role this protein may play in the progression of prostate cancer, especially in view of recent observations that its expression is linked with increased invasion, metastasis, and drug resistance in multiple cancer cell types. The results we obtained were rather surprising and revealed that stable expression of tissue transglutaminase in androgen-sensitive LNCaP prostate cancer cells rendered these cells independent of androgen for growth and survival by silencing the AR expression. The AR silencing in TG2 expressing cells (TG2-infected LNCaP and PC-3 cells) was due to TG2-induced activation of the inflammatory nuclear transcription factor-kB (NF-kB). Thus, TG2 induced NF-kB was found to directly bind to the AR promoter. Importantly, TG2 protein was specifically recruited to the AR promoter in complex with the p65 subunit of NF-kB. Moreover, TG2 expressing LNCaP and PC-3 cells exhibited epithelial-to-mesenchymal transition, as evidenced by gain of mesenchymal (such as fibronectin, vimentin, etc.) and loss of epithelial markers (such as E-cadherin, b-catenin). Taken together, these results suggested a new function for TG2 and revealed a novel mechanism that is responsible for the progression of prostate cancer to the aggressive hormone-refractory phenotype.
Resumo:
The discovery and characterization of oncofetal proteins have led to significant advances in early cancer diagnosis and therapeutic monitoring of patients undergoing cancer chemotherapy. These tumor-associated antigens are presently measured by sensitive, specific immunoassay techniques based on the detection of minute amounts of labeled antigen or antibody incorporated into immune complexes, which must be isolated from free antigen and antibody.^ Since there are several disadvantages with using radioisotopes, the most common immunolabel, one major objective was to prepare covalently coupled enzyme-antibody conjugates and evaluate their use as a practical alternative to radiolabeled immune reagents. An improved technique for the production of enzyme-antibody conjugates was developed that involves oxidizing the carbohydrate moieties on a glycoprotein enzyme, then introducing antibody in the presence of polyethylene glycol (PEG). Covalent enzyme-antibody conjugates involving alkaline phosphatase and amyloglucosidase were produced and characterized.^ In order to increase the sensitivity of detecting the amyloglucosidase-antibody conjugate, an enzyme cycling assay was developed that measures glucose, the product of maltose cleavage by amyloglucosidase, in the picomole range. The increased sensitivity obtained by combined usage of the amyloglucosidase-antibody conjugate and enzyme cycling assay was then compared to that of conventional enzyme immunoassay (EIA).^ For immune complex isolation, polystyrene tubes and protein A-bearing Staphylococcus aureus were evaluated as solid phase matrices, upon which antibodies can be immobilized. A sandwich-type EIA, using antibody-coated S. aureus, was developed that measures human albumin (HSA) in the nanogram range. The assay, using an alkaline phosphatase-anti-HSA conjugate, was applied to the determination of HSA in human urine and evaluated extensively for its clinical applicability.^ Finally, in view of the clinical significance of alpha-fetoprotein (AFP) as an oncofetal antigen and the difficulty with its purification for use as an immunogen and assay standard, a chemical purification protocol was developed that resulted in a high yield of immunochemically pure AFP. ^
Resumo:
The DNA repair gene, XPF, is implicated in numerous processes relating to maintenance of genomic stability. The experiments presented herein were designed to investigate the role of XPF in homologous recombination processes. Specifically, the role of XPF in plasmid-chromosome and intrachromosomal recombination was evaluated. To interrogate the mechanistic role of XPF in plasmid-chromosome recombination, a homologous gene targeting system at the APRT locus in Chinese Hamster Ovary (CHO) cells was used. The targeting vector is linearized within 900 base pairs of heterology, which generates a substrate with long, nonhomologous 3′-OH ends that must be efficiently processed, presumably by the Xpf/Ercc1 heterodimer, prior to a productive recombination event. These experiments demonstrated a significant decrease in the targeted gene recombination frequency and a significant change to the recombinant product distributions in XPF- and ERCC1-deficient CHO cell lines, which suggest that the Xpf/Ercc1 heterodimer is essential for strand invasion recombination involving the processing of long, nonhomologous tails. In order to evaluate the role of XPF in intrachromosomal recombination, direct APRT repeat constructs at the chromosomal APRT locus in XPF-proficient and XPF-deficient CHO cells were used in spontaneous and DSB-induced recombination experiments. A defect in intrachromosomal recombination was only shown for UV41-derived XPF -deficient CHO cells, which have a severe interstrand crosslinking phenotype. The results of these studies demonstrate a requirement for XPF function in both plasmid-chromosome and intrachromosomal recombination, specifically in removal of long, single-stranded 3′-OH DNA ends. In addition, these studies identified a correlation between the interstrand cross-linking phenotype and the intrachromosomal recombination phenotype of each CHO cell line, but did not demonstrate a correlation between the interstrand cross-linking phenotype and the plasmid-chromosome recombination phenotype of these CHO cell lines. ^