3 resultados para dwarfism

em DigitalCommons@The Texas Medical Center


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sry and Wnt4 cDNAs were individually introduced into the ubiquitously-expressed Rosa26 ( R26) locus by gene targeting in embryonic stem (ES) cells to create a conditional gene expression system in mice. In the targeted alleles, expression of these cDNAs should be blocked by a neomycin resistance selection cassette that is flanked by loxP sites. Transgene expression should be activated after the blocking cassette is deleted by Cre recombinase. ^ To test this conditional expression system, I have bred R26-stop- Sry and R26-stop-Wnt4 heterozygotes with a MisRII-Cre mouse line that expresses Cre in the gonads of both sexes. Analysis of these two types of bigenic heterozygotes indicated that their gonads developed normally like those of wild types. However, one XX R26-Sry/R26-Sry; MisR2-Cre/+ showed epididymis-like structures resembling those of males. In contrast, only normal phenotypes were observed in XY R26-Wnt4/R26-Wnt4; MisR2-Cre /+ mice. To interpret these results, I have tested for Cre recombinase activity by Southern blot and transcription of the Sry and Wnt4 transgenes by RT-PCR. Results showed that bigenic mutants had insufficient activation of the transgenes in their gonads at E12.5 and E13.5. Therefore, the failure to observe mutant phenotypes may have resulted from low activity of MisR2-Cre recombination at the appropriate time. ^ Col2a1-Cre transgenic mice express Cre in differentiating chondrocytes. R26-Wnt4; Col2a1-Cre bigenic heterozygous mice were found to exhibit a dramatic alteration in growth presumably caused by Wnt4 overexpression during chondrogenesis. R26-Wnt4; Col2a1-Cre mice exhibited dwarfism beginning approximately 10 days after birth. In addition, they also had craniofacial abnormalities, and had delayed ossification of the lumbar vertebrate and pelvic bones. Histological analysis of the growth plates of R26-Wnt4; Col2a1-Cre mice revealed less structural organization and a delay in onset of the primary and secondary ossification centers. Molecular studies confirmed that overexpression of Wnt4 causes decreased proliferation and early maturation of chondrocytes. In addition, R26-Wnt4; Col2a1-Cre mice had decreased expression of vascular endothelial growth factor (VEGF), suggesting that defects in vascularization may contribute to the dwarf phenotype. Finally, 9-month-old R26-Wnt4; Col2a1-Cre mice had significantly more fat cells in the marrow cavities of their metaphysis long bones, implying that long-term overexpression of Wnt4may cause bone marrow pathologies. In conclusion, Wnt4 was activated by Col2a1-Cre recombinase and was overexpressed in the growth plate, resulting in aberrant proliferation and differentiation of chondrocytes, and ultimately leads to dwarfism in mice. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Little is known about the etiology of Achondroplasia (AC), Thanatophoric Dwarfism (TD), and autosomal deletions (CD). These syndromes are due to fully penetrate genetic mutations, yet arise de novo, instead of being inherited. We examined the association between parental demographic characteristics and parental occupations with exposure to ionizing radiation and these birth defects. ^ We conducted a cross-sectional study and two case-control studies using a large database that was created by linking records from Texas Birth Defects Registry, Texas birth certificates and Texas fetal death certificates from 1996 to 2002. The first case-control study was matched on paternal age and examined 73 cases of AC and 43 cases of TD. The second case-control study was unmatched and examined 343 cases of autosomal deletion syndromes. ^ We used a job exposure matrix (JEM) to measure exposures to ionizing radiation in the workplace. This gives an estimate of the intensity and probability of exposure to ionizing radiation for each occupation and industry. ^ The prevalence rate of Achondroplasia, Thanatophoric Dwarfism and autosomal deletions was 0.36 per 10,000, 0.21 per 10,000, and 1.68 per 10,000 births respectively in Texas 1996–2002. ^ Older fathers had a strong increase in the risk of having offspring with AC or TD and a modest increase in the risk of CD. Fathers who were Black or Hispanic were less likely to have infants with AC or TD compared to Whites (adjusted POR=0.61; 95% CI 0.30, 1.26 and 0.44; 95% CI 0.27, 0.88, respectively). Black fathers and Hispanic mothers were also less likely to have infants with CD (adjusted POR=0.54; 95% CI 0.22, 1.35 and 0.62; 95% CI 0.39, 0.97). ^ After adjusting for other parental demographic factors, there was no significant relation between fathers exposure to ionizing radiation in the work place and AC or TD (adjusted OR=0.48; 95% CI 0.19, 1.25) and no significant relation between parental exposure to ionizing radiation in the work place and CD (adjusted OR=1.16; 95% CI 0.73, 1.85). ^ This is the first study to find an association between father's age and TD and CD and paternal race and AC or CD. Parental exposure to radiation for therapeutic or diagnostic indications was not measured, thus it can not be excluded as a cause of these birth defects. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bloom syndrome (BS) is an autosomal recessive disorder characterized by dwarfism, immunodeficiency, impaired fertility, and most importantly, early development of a broad range of cancers. The hallmark of BS cells is hyper-recombination, characterized by a drastically elevated frequency of sister chromatid exchange (SCE). BLM, the gene mutated in BS, encodes a DNA helicase of the RecQ protein family. BLM is thought to participate in several DNA transactions and to interact with many proteins involved in DNA replication, recombination, and repair. However, the precise function of BLM and the BLM-dependent anti-tumor mechanism remain obscure. ^ A novel protein, BLAP75 (BLM-associated polypeptide, 75KD), was identified to form an evolutionarily conserved complex with BLM and DNA topoisomerase IIIα (Topo IIIα). Our work demonstrates that loss of BLAP75 destabilized BLM and Topo IIIα proteins. BLAP75 colocalized with BLM in subnuclear foci in response to DNA damage and the recruitment of BLM to these foci was BLAP75-dependent. Moreover, depletion of BLAP75 by siRNA resulted in an elevated SCE rate similar to cells depleted of BLM by siRNA. In addition, RNAi-mediated silencing of BLAP75 greatly diminished cell viability. This cellular deficiency was rescued by expression of wild type BLAP75 but not BLAP75 with mutated conserved domain III, which abrogated the interaction between BLAP75, BLM and Topo IIIα, suggesting that the integrity of BLM-Topo IIIα-BLAP75 complex might be critical for cell survival. Finally, I found that BLAP75 was phosphorylated during mitosis and upon various DNA-damaging agents, implying that BLAP75 might also function in mitosis and DNA damage response. ^ Taken together, this study has defined BLAP75 as an integral component of the BLM complex to maintain genome stability. Our findings provide insights into the molecular mechanisms of the BLM helicase pathway and tumorigenesis process associated with these mechanisms. ^