10 resultados para duration, functional delta method, gamma kernel, hazard rate.
em DigitalCommons@The Texas Medical Center
Resumo:
Background. Literature worldwide has documented associations between gender-based relationship inequity, sexual communication self-efficacy, and actual use of condoms and contraceptives among young women. However studies that have rigorously tested these associations in southern Vietnam are extremely rare. This study aimed to examine these associations and other current sexual practices among undergraduate female students in the Mekong Delta. Method. A qualitative study was conducted to examine the operationalization of the Theory of Gender and Power and to obtain salient and culture-relevant dimensions of perceived gender relations in the Mekong Delta of Vietnam. Sixty-four undergraduate female students from two universities participated in eight group discussions focusing on their viewpoints regarding national and local gender equity issues. A subsequent cross-sectional survey consisting of 1181 third-year female students from Can Tho University and An Giang University was conducted. Latent variable modeling and logistic regression were employed to examine the hypothesized associations. Results. Dimensions of perceived gender relations were attributable to theoretical structures of labor, power, and cathexis. Perceptions about gender inequities were comparable to findings from several reports, in which women were still viewed as inferior and subordinate to men. Among students who had ever had a boyfriend(s) (72.4%), 44.8% indicated that their boyfriend had ever asked for sex, 13% had ever had penile-vaginal sex, and 10.3% had ever had oral sex. For those who had ever had penile-vaginal sex, 33% did not use any contraceptive method at first sex. The greater a student’s perception that women were subordinate to men, the lower her self-efficacy for sexual communication and the lower her actual frequencies of asking for contraceptive or condom use. Sexual communication self-efficacy was marginally associated with actual contraceptive use (p=.039) and condom use (p=.092) at first sex. Conclusion. Sexual health promotion strategies should address the influence of perceived unequal gender relations on young women’s sexual communication self-efficacy and the subsequent impact on actual contraceptive and condom use.^
Resumo:
Many public health agencies and researchers are interested in comparing hospital outcomes, for example, morbidity, mortality, and hospitalization across areas and hospitals. However, since there is variation of rates in clinical trials among hospitals because of several biases, we are interested in controlling for the bias and assessing real differences in clinical practices. In this study, we compared the variations between hospitals in rates of severe Intraventricular Haemorrhage (IVH) infant using Frequentist statistical approach vs. Bayesian hierarchical model through simulation study. The template data set for simulation study was included the number of severe IVH infants of 24 intensive care units in Australian and New Zealand Neonatal Network from 1995 to 1997 in severe IVH rate in preterm babies. We evaluated the rates of severe IVH for 24 hospitals with two hierarchical models in Bayesian approach comparing their performances with the shrunken rates in Frequentist method. Gamma-Poisson (BGP) and Beta-Binomial (BBB) were introduced into Bayesian model and the shrunken estimator of Gamma-Poisson (FGP) hierarchical model using maximum likelihood method were calculated as Frequentist approach. To simulate data, the total number of infants in each hospital was kept and we analyzed the simulated data for both Bayesian and Frequentist models with two true parameters for severe IVH rate. One was the observed rate and the other was the expected severe IVH rate by adjusting for five predictors variables for the template data. The bias in the rate of severe IVH infant estimated by both models showed that Bayesian models gave less variable estimates than Frequentist model. We also discussed and compared the results from three models to examine the variation in rate of severe IVH by 20th centile rates and avoidable number of severe IVH cases. ^
Resumo:
The considerable search for synergistic agents in cancer research is motivated by the therapeutic benefits achieved by combining anti-cancer agents. Synergistic agents make it possible to reduce dosage while maintaining or enhancing a desired effect. Other favorable outcomes of synergistic agents include reduction in toxicity and minimizing or delaying drug resistance. Dose-response assessment and drug-drug interaction analysis play an important part in the drug discovery process, however analysis are often poorly done. This dissertation is an effort to notably improve dose-response assessment and drug-drug interaction analysis. The most commonly used method in published analysis is the Median-Effect Principle/Combination Index method (Chou and Talalay, 1984). The Median-Effect Principle/Combination Index method leads to inefficiency by ignoring important sources of variation inherent in dose-response data and discarding data points that do not fit the Median-Effect Principle. Previous work has shown that the conventional method yields a high rate of false positives (Boik, Boik, Newman, 2008; Hennessey, Rosner, Bast, Chen, 2010) and, in some cases, low power to detect synergy. There is a great need for improving the current methodology. We developed a Bayesian framework for dose-response modeling and drug-drug interaction analysis. First, we developed a hierarchical meta-regression dose-response model that accounts for various sources of variation and uncertainty and allows one to incorporate knowledge from prior studies into the current analysis, thus offering a more efficient and reliable inference. Second, in the case that parametric dose-response models do not fit the data, we developed a practical and flexible nonparametric regression method for meta-analysis of independently repeated dose-response experiments. Third, and lastly, we developed a method, based on Loewe additivity that allows one to quantitatively assess interaction between two agents combined at a fixed dose ratio. The proposed method makes a comprehensive and honest account of uncertainty within drug interaction assessment. Extensive simulation studies show that the novel methodology improves the screening process of effective/synergistic agents and reduces the incidence of type I error. We consider an ovarian cancer cell line study that investigates the combined effect of DNA methylation inhibitors and histone deacetylation inhibitors in human ovarian cancer cell lines. The hypothesis is that the combination of DNA methylation inhibitors and histone deacetylation inhibitors will enhance antiproliferative activity in human ovarian cancer cell lines compared to treatment with each inhibitor alone. By applying the proposed Bayesian methodology, in vitro synergy was declared for DNA methylation inhibitor, 5-AZA-2'-deoxycytidine combined with one histone deacetylation inhibitor, suberoylanilide hydroxamic acid or trichostatin A in the cell lines HEY and SKOV3. This suggests potential new epigenetic therapies in cell growth inhibition of ovarian cancer cells.
Resumo:
(1) A mathematical theory for computing the probabilities of various nucleotide configurations is developed, and the probability of obtaining the correct phylogenetic tree (model tree) from sequence data is evaluated for six phylogenetic tree-making methods (UPGMA, distance Wagner method, transformed distance method, Fitch-Margoliash's method, maximum parsimony method, and compatibility method). The number of nucleotides (m*) necessary to obtain the correct tree with a probability of 95% is estimated with special reference to the human, chimpanzee, and gorilla divergence. m* is at least 4,200, but the availability of outgroup species greatly reduces m* for all methods except UPGMA. m* increases if transitions occur more frequently than transversions as in the case of mitochondrial DNA. (2) A new tree-making method called the neighbor-joining method is proposed. This method is applicable either for distance data or character state data. Computer simulation has shown that the neighbor-joining method is generally better than UPGMA, Farris' method, Li's method, and modified Farris method on recovering the true topology when distance data are used. A related method, the simultaneous partitioning method, is also discussed. (3) The maximum likelihood (ML) method for phylogeny reconstruction under the assumption of both constant and varying evolutionary rates is studied, and a new algorithm for obtaining the ML tree is presented. This method gives a tree similar to that obtained by UPGMA when constant evolutionary rate is assumed, whereas it gives a tree similar to that obtained by the maximum parsimony tree and the neighbor-joining method when varying evolutionary rate is assumed. ^
Resumo:
Background. Colorectal cancer (CRC) is the third most commonly diagnosed cancer (excluding skin cancer) in both men and women in the United States, with an estimated 148,810 new cases and 49,960 deaths in 2008 (1). Racial/ethnic disparities have been reported across the CRC care continuum. Studies have documented racial/ethnic disparities in CRC screening (2-9), but only a few studies have looked at these differences in CRC screening over time (9-11). No studies have compared these trends in a population with CRC and without cancer. Additionally, although there is evidence suggesting that hospital factors (e.g. teaching hospital status and NCI designation) are associated with CRC survival (12-16), no studies have sought to explain the racial/ethnic differences in survival by looking at differences in socio-demographics, tumor characteristics, screening, co-morbidities, treatment, as well as hospital characteristics. ^ Objectives and Methods. The overall goals of this dissertation were to describe the patterns and trends of racial/ethnic disparities in CRC screening (i.e. fecal occult blood test (FOBT), sigmoidoscopy (SIG) and colonoscopy (COL)) and to determine if racial/ethnic disparities in CRC survival are explained by differences in socio-demographic, tumor characteristics, screening, co-morbidities, treatment, and hospital factors. These goals were accomplished in a two-paper format.^ In Paper 1, "Racial/Ethnic Disparities and Trends in Colorectal Cancer Screening in Medicare Beneficiaries with Colorectal Cancer and without Cancer in SEER Areas, 1992-2002", the study population consisted of 50,186 Medicare beneficiaries diagnosed with CRC from 1992 to 2002 and 62,917 Medicare beneficiaries without cancer during the same time period. Both cohorts were aged 67 to 89 years and resided in 16 Surveillance, Epidemiology and End Results (SEER) regions of the United States. Screening procedures between 6 months and 3 years prior to the date of diagnosis for CRC patients and prior to the index date for persons without cancer were identified in Medicare claims. The crude and age-gender-adjusted percentages and odds ratios of receiving FOBT, SIG, or COL were calculated. Multivariable logistic regression was used to assess race/ethnicity on the odds of receiving CRC screening over time.^ Paper 2, "Racial/Ethnic Disparities in Colorectal Cancer Survival: To what extent are racial/ethnic disparities in survival explained by racial differences in socio-demographics, screening, co-morbidities, treatment, tumor or hospital characteristics", included a cohort of 50,186 Medicare beneficiaries diagnosed with CRC from 1992 to 2002 and residing in 16 SEER regions of the United States which were identified in the SEER-Medicare linked database. Survival was estimated using the Kaplan-Meier method. Cox proportional hazard modeling was used to estimate hazard ratios (HR) of mortality and 95% confidence intervals (95% CI).^ Results. The screening analysis demonstrated racial/ethnic disparities in screening over time among the cohort without cancer. From 1992 to 1995, Blacks and Hispanics were less likely than Whites to receive FOBT (OR=0.75, 95% CI: 0.65-0.87; OR=0.50, 95% CI: 0.34-0.72, respectively) but their odds of screening increased from 2000 to 2002 (OR=0.79, 95% CI: 0.72-0.85; OR=0.67, 95% CI: 0.54-0.75, respectively). Blacks and Hispanics were less likely than Whites to receive SIG from 1992 to 1995 (OR=0.75, 95% CI: 0.57-0.98; OR=0.29, 95% CI: 0.12-0.71, respectively), but their odds of screening increased from 2000 to 2002 (OR=0.79, 95% CI: 0.68-0.93; OR=0.50, 95% CI: 0.35-0.72, respectively).^ The survival analysis showed that Blacks had worse CRC-specific survival than Whites (HR: 1.33, 95% CI: 1.23-1.44), but this was reduced for stages I-III disease after full adjustment for socio-demographic, tumor characteristics, screening, co-morbidities, treatment and hospital characteristics (aHR=1.24, 95% CI: 1.14-1.35). Socioeconomic status, tumor characteristics, treatment and co-morbidities contributed to the reduction in hazard ratios between Blacks and Whites with stage I-III disease. Asians had better survival than Whites before (HR: 0.73, 95% CI: 0.64-0.82) and after (aHR: 0.80, 95% CI: 0.70-0.92) adjusting for all predictors for stage I-III disease. For stage IV, both Asians and Hispanics had better survival than Whites, and after full adjustment, survival improved (aHR=0.73, 95% CI: 0.63-0.84; aHR=0.74, 95% CI: 0.61-0.92, respectively).^ Conclusion. Screening disparities remain between Blacks and Whites, and Hispanics and Whites, but have decreased in recent years. Future studies should explore other factors that may contribute to screening disparities, such as physician recommendations and language/cultural barriers in this and younger populations.^ There were substantial racial/ethnic differences in CRC survival among older Whites, Blacks, Asians and Hispanics. Co-morbidities, SES, tumor characteristics, treatment and other predictor variables contributed to, but did not fully explain the CRC survival differences between Blacks and Whites. Future research should examine the role of quality of care, particularly the benefit of treatment and post-treatment surveillance, in racial disparities in survival.^
Resumo:
Currently more than half of Electronic Health Record (EHR) projects fail. Most of these failures are not due to flawed technology, but rather due to the lack of systematic considerations of human issues. Among the barriers for EHR adoption, function mismatching among users, activities, and systems is a major area that has not been systematically addressed from a human-centered perspective. A theoretical framework called Functional Framework was developed for identifying and reducing functional discrepancies among users, activities, and systems. The Functional Framework is composed of three models – the User Model, the Designer Model, and the Activity Model. The User Model was developed by conducting a survey (N = 32) that identified the functions needed and desired from the user’s perspective. The Designer Model was developed by conducting a systemic review of an Electronic Dental Record (EDR) and its functions. The Activity Model was developed using an ethnographic method called shadowing where EDR users (5 dentists, 5 dental assistants, 5 administrative personnel) were followed quietly and observed for their activities. These three models were combined to form a unified model. From the unified model the work domain ontology was developed by asking users to rate the functions (a total of 190 functions) in the unified model along the dimensions of frequency and criticality in a survey. The functional discrepancies, as indicated by the regions of the Venn diagrams formed by the three models, were consistent with the survey results, especially with user satisfaction. The survey for the Functional Framework indicated the preference of one system over the other (R=0.895). The results of this project showed that the Functional Framework provides a systematic method for identifying, evaluating, and reducing functional discrepancies among users, systems, and activities. Limitations and generalizability of the Functional Framework were discussed.
Resumo:
CHARACTERIZATION OF THE COUNT RATE PERFORMANCE AND EVALUATION OF THE EFFECTS OF HIGH COUNT RATES ON MODERN GAMMA CAMERAS Michael Stephen Silosky, B.S. Supervisory Professor: S. Cheenu Kappadath, Ph.D. Evaluation of count rate performance (CRP) is an integral component of gamma camera quality assurance and measurement of system dead time (τ) is important for quantitative SPECT. The CRP of three modern gamma cameras was characterized using established methods (Decay and Dual Source) under a variety of experimental conditions. For the Decay method, input count rate was plotted against observed count rate and fit to the paralyzable detector model (PDM) to estimate τ (Rates method). A novel expression for observed counts as a function of measurement time interval was derived and the observed counts were fit to this expression to estimate τ (Counts method). Correlation and Bland-Altman analysis were performed to assess agreement in estimates of τ between methods. The dependencies of τ on energy window definition and incident energy spectrum were characterized. The Dual Source method was also used to estimate τ and its agreement with the Decay method under identical conditions and the effects of total activity and the ratio of source activities were investigated. Additionally, the effects of count rate on several performance metrics were evaluated. The CRP curves for each system agreed with the PDM at low count rates but deviated substantially at high count rates. Estimates of τ for the paralyzable portion of the CRP curves using the Rates and Counts methods were highly correlated (r=0.999) but with a small (~6%) difference. No significant difference was observed between the highly correlated estimates of τ using the Decay or Dual Source methods under identical experimental conditions (r=0.996). Estimates of τ increased as a power-law function with decreasing ratio of counts in the photopeak to the total counts and linearly with decreasing spectral effective energy. Dual Source method estimates of τ varied as a quadratic with the ratio of the single source to combined source activities and linearly with total activity used across a large range. Image uniformity, spatial resolution, and energy resolution degraded linearly with count rate and image distorting effects were observed. Guidelines for CRP testing and a possible method for the correction of count rate losses for clinical images have been proposed.
Resumo:
Primate immunodeficiency viruses, or lentiviruses (HIV-1, HIV-2, and SIV), and hepatitis delta virus (HDV) are RNA viruses characterized by rapid evolution. Infection by primate immunodeficiency viruses usually results in the development of acquired immunodeficiency syndrome (AIDS) in humans and AIDS-like illnesses in Asian macaques. Similarly, hepatitis delta virus infection causes hepatitis and liver cancer in humans. These viruses are heterogeneous within an infected patient and among individuals. Substitution rates in the virus genomes are high and vary in different lineages and among sites. Methods of phylogenetic analysis were applied to study the evolution of primate lentiviruses and the hepatitis delta virus. The following results have been obtained: (1) The substitution rate varies among sites of primate lentivirus genes according to the two parameter gamma distribution, with the shape parameter $\alpha$ being close to 1. (2) Primate immunodeficiency viruses fall into species-specific lineages. Therefore, viral transmissions across primate species are not as frequent as suggested by previous authors. (3) Primate lentiviruses have acquired or lost their pathogenicity several times in the course of evolution. (4) Evidence was provided for multiple infections of a North American patient by distinct HIV-1 strains of the B subtype. (5) Computer simulations indicate that the probability of committing an error in testing HIV transmission depends on the number of virus sequences and their length, the divergence times among sequences, and the model of nucleotide substitution. (6) For future investigations of HIV-1 transmissions, using longer virus sequences and avoiding the use of distant outgroups is recommended. (7) Hepatitis delta virus strains are usually related according to the geographic region of isolation. (8) Evolution of HDV is characterized by the rate of synonymous substitution being lower than the nonsynonymous substitution rate and the rate of evolution of the noncoding region. (9) There is a strong preference for G and C nucleotides at the third codon positions of the HDV coding region. ^
Resumo:
RecA in Escherichia coli and it's homologue, ScRad51 in Saccharomyces cerevisiae, play important roles in recombinational repair. ScRad51 homologues have been discovered in a wide range of organisms including Schizosaccharomyces pombe, lily, chicken, mouse and human. To date there is no direct evidence to describe that mouse Rad51(MmRad51) is involved in DNA double-strand break repair. In order to elucidate the role of MmRad51 in vivo, it was mutated by the embryonic stem (ES) cell/gene targeting technology in mice. The mutant embryos arrested in development shortly after implantation. There was a decrease in cell proliferation followed by programmed cell death, and trophectoderm-derived cells were sensitive to $\gamma$-radiation. Severe chromosome loss was observed in most mitotically dividing cells. The mutant embryos lived longer and developed further in a p53 mutant background; however, double-mutant embryonic fibroblasts failed to proliferate in tissue culture, reflecting the embryos limited life span. Based on these data, MmRad51 repairs DNA damage induced by $\gamma$-radiation, is needed to maintain euplody, and plays an important role in proliferating cells.^ Ku is a heterodimer of 70 and 80 kDs subunit, which binds to DNA ends and other altered DNA structures such as hairpins, nicks, and gaps. In addition, Ku is required for DNA-PK activity through a direct association. Although the biochemical properties of Ku and DNA-PKcs have been characterized in cells, their physiological functions are not clear. In order to understand the function of Ku in vivo, we generated mice homozygous for a mutation of the Ku80 gene. Ku80-deficient mice, like scid mice, showed severe immunodeficiency due to a impairment of V(D)J recombination. Mutant mice were semiviable and runted, cells derived from mutant embryos displayed hypersensitivity to $\gamma$-radiation, a decreased growth rate, a slow entry into S phase, altered colony size distributions, and a short life span. Based on these results, mutant cells and mice appeared to prematurely age. ^
Resumo:
My dissertation focuses mainly on Bayesian adaptive designs for phase I and phase II clinical trials. It includes three specific topics: (1) proposing a novel two-dimensional dose-finding algorithm for biological agents, (2) developing Bayesian adaptive screening designs to provide more efficient and ethical clinical trials, and (3) incorporating missing late-onset responses to make an early stopping decision. Treating patients with novel biological agents is becoming a leading trend in oncology. Unlike cytotoxic agents, for which toxicity and efficacy monotonically increase with dose, biological agents may exhibit non-monotonic patterns in their dose-response relationships. Using a trial with two biological agents as an example, we propose a phase I/II trial design to identify the biologically optimal dose combination (BODC), which is defined as the dose combination of the two agents with the highest efficacy and tolerable toxicity. A change-point model is used to reflect the fact that the dose-toxicity surface of the combinational agents may plateau at higher dose levels, and a flexible logistic model is proposed to accommodate the possible non-monotonic pattern for the dose-efficacy relationship. During the trial, we continuously update the posterior estimates of toxicity and efficacy and assign patients to the most appropriate dose combination. We propose a novel dose-finding algorithm to encourage sufficient exploration of untried dose combinations in the two-dimensional space. Extensive simulation studies show that the proposed design has desirable operating characteristics in identifying the BODC under various patterns of dose-toxicity and dose-efficacy relationships. Trials of combination therapies for the treatment of cancer are playing an increasingly important role in the battle against this disease. To more efficiently handle the large number of combination therapies that must be tested, we propose a novel Bayesian phase II adaptive screening design to simultaneously select among possible treatment combinations involving multiple agents. Our design is based on formulating the selection procedure as a Bayesian hypothesis testing problem in which the superiority of each treatment combination is equated to a single hypothesis. During the trial conduct, we use the current values of the posterior probabilities of all hypotheses to adaptively allocate patients to treatment combinations. Simulation studies show that the proposed design substantially outperforms the conventional multi-arm balanced factorial trial design. The proposed design yields a significantly higher probability for selecting the best treatment while at the same time allocating substantially more patients to efficacious treatments. The proposed design is most appropriate for the trials combining multiple agents and screening out the efficacious combination to be further investigated. The proposed Bayesian adaptive phase II screening design substantially outperformed the conventional complete factorial design. Our design allocates more patients to better treatments while at the same time providing higher power to identify the best treatment at the end of the trial. Phase II trial studies usually are single-arm trials which are conducted to test the efficacy of experimental agents and decide whether agents are promising to be sent to phase III trials. Interim monitoring is employed to stop the trial early for futility to avoid assigning unacceptable number of patients to inferior treatments. We propose a Bayesian single-arm phase II design with continuous monitoring for estimating the response rate of the experimental drug. To address the issue of late-onset responses, we use a piece-wise exponential model to estimate the hazard function of time to response data and handle the missing responses using the multiple imputation approach. We evaluate the operating characteristics of the proposed method through extensive simulation studies. We show that the proposed method reduces the total length of the trial duration and yields desirable operating characteristics for different physician-specified lower bounds of response rate with different true response rates.