8 resultados para downloading of data

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the United States, “binge” drinking among college students is an emerging public health concern due to the significant physical and psychological effects on young adults. The focus is on identifying interventions that can help decrease high-risk drinking behavior among this group of drinkers. One such intervention is Motivational interviewing (MI), a client-centered therapy that aims at resolving client ambivalence by developing discrepancy and engaging the client in change talk. Of late, there is a growing interest in determining the active ingredients that influence the alliance between the therapist and the client. This study is a secondary analysis of the data obtained from the Southern Methodist Alcohol Research Trial (SMART) project, a dismantling trial of MI and feedback among heavy drinking college students. The present project examines the relationship between therapist and client language in MI sessions on a sample of “binge” drinking college students. Of the 126 SMART tapes, 30 tapes (‘MI with feedback’ group = 15, ‘MI only’ group = 15) were randomly selected for this study. MISC 2.1, a mutually exclusive and exhaustive coding system, was used to code the audio/videotaped MI sessions. Therapist and client language were analyzed for communication characteristics. Overall, therapists adopted a MI consistent style and clients were found to engage in change talk. Counselor acceptance, empathy, spirit, and complex reflections were all significantly related to client change talk (p-values ranged from 0.001 to 0.047). Additionally, therapist ‘advice without permission’ and MI Inconsistent therapist behaviors were strongly correlated with client sustain talk (p-values ranged from 0.006 to 0.048). Simple linear regression models showed a significant correlation between MI consistent (MICO) therapist language (independent variable) and change talk (dependent variable) and MI inconsistent (MIIN) therapist language (independent variable) and sustain talk (dependent variable). The study has several limitations such as small sample size, self-selection bias, poor inter-rater reliability for the global scales and the lack of a temporal measure of therapist and client language. Future studies might consider a larger sample size to obtain more statistical power. In addition the correlation between therapist language, client language and drinking outcome needs to be explored.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Problems due to the lack of data standardization and data management have lead to work inefficiencies for the staff working with the vision data for the Lifetime Surveillance of Astronaut Health. Data has been collected over 50 years in a variety of manners and then entered into a software. The lack of communication between the electronic health record (EHR) form designer, epidemiologists, and optometrists has led to some level to confusion on the capability of the EHR system and how its forms can be designed to fit all the needs of the relevant parties. EHR form customizations or form redesigns were found to be critical for using NASA's EHR system in the most beneficial way for its patients, optometrists, and epidemiologists. In order to implement a protocol, data being collected was examined to find the differences in data collection methods. Changes were implemented through the establishment of a process improvement team (PIT). Based on the findings of the PIT, suggestions have been made to improve the current EHR system. If the suggestions are implemented correctly, this will not only improve efficiency of the staff at NASA and its contractors, but set guidelines for changes in other forms such as the vision exam forms. Because NASA is at the forefront of such research and health surveillance the impact of this management change could have a drastic improvement on the collection of and adaptability of the EHR. Accurate data collection from this 50+ year study is ongoing and is going to help current and future generations understand the implications of space flight on human health. It is imperative that the vast amount of information is documented correctly.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

These Data Management Plans are more comprehensive and complex than in the past. Libraries around the nation are trying to put together tools to help researchers write plans that conform to the new requirements. This session will look at some of these tools.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research examines prevalence of alcohol and illicit substance use in the United States and Mexico and associated socio-demographic characteristics. The sources of data for this study are public domain data from the U.S. National Household Survey of Drug Abuse, 1988 (n = 8814), and the Mexican National Survey of Addictions, 1988 (n = 12,579). In addition, this study discusses methodologic issues in cross-cultural and cross-national comparison of behavioral and epidemiologic data from population-based samples. The extent to which patterns of substance abuse vary among subgroups of the U.S. and Mexican populations is assessed, as well as the comparability and equivalence of measures of alcohol and drug use in these national samples.^ The prevalence of alcohol use was somewhat similar in the two countries for all three measures of use: lifetime, past year and past year heavy use, (85.0%, 68.1%, 39.6% and 72.6%, 47.7% and 45.8% for the U.S. and Mexico respectively). The use of illegal substances varied widely between countries, with U.S. respondents reporting significantly higher levels of use than their Mexican counterparts. For example, reported use of any illicit substance in lifetime and past year was 34.2%, 11.6 for the U.S., and 3.3% and 0.6% for Mexico. Despite these differences in prevalence, two demographic characteristics, gender and age, were important correlates of use in both countries. Men in both countries were more likely to report use of alcohol and illicit substances than women. Generally speaking, a greater proportion of respondents in both countries 18 years of age or older reported use of alcohol for all three measures than younger respondents; and a greater proportion of respondents between the ages of 18 and 34 years reported use of illicit substances during lifetime and past year than any other age group.^ Additional substantive research investigating population-based samples and at-risk subgroups is needed to understand the underlying mechanisms of these associations. Further development of cross-culturally meaningful survey methods is warranted to validate comparisons of substance use across countries and societies. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many studies in biostatistics deal with binary data. Some of these studies involve correlated observations, which can complicate the analysis of the resulting data. Studies of this kind typically arise when a high degree of commonality exists between test subjects. If there exists a natural hierarchy in the data, multilevel analysis is an appropriate tool for the analysis. Two examples are the measurements on identical twins, or the study of symmetrical organs or appendages such as in the case of ophthalmic studies. Although this type of matching appears ideal for the purposes of comparison, analysis of the resulting data while ignoring the effect of intra-cluster correlation has been shown to produce biased results.^ This paper will explore the use of multilevel modeling of simulated binary data with predetermined levels of correlation. Data will be generated using the Beta-Binomial method with varying degrees of correlation between the lower level observations. The data will be analyzed using the multilevel software package MlwiN (Woodhouse, et al, 1995). Comparisons between the specified intra-cluster correlation of these data and the estimated correlations, using multilevel analysis, will be used to examine the accuracy of this technique in analyzing this type of data. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study is to investigate the effects of predictor variable correlations and patterns of missingness with dichotomous and/or continuous data in small samples when missing data is multiply imputed. Missing data of predictor variables is multiply imputed under three different multivariate models: the multivariate normal model for continuous data, the multinomial model for dichotomous data and the general location model for mixed dichotomous and continuous data. Subsequent to the multiple imputation process, Type I error rates of the regression coefficients obtained with logistic regression analysis are estimated under various conditions of correlation structure, sample size, type of data and patterns of missing data. The distributional properties of average mean, variance and correlations among the predictor variables are assessed after the multiple imputation process. ^ For continuous predictor data under the multivariate normal model, Type I error rates are generally within the nominal values with samples of size n = 100. Smaller samples of size n = 50 resulted in more conservative estimates (i.e., lower than the nominal value). Correlation and variance estimates of the original data are retained after multiple imputation with less than 50% missing continuous predictor data. For dichotomous predictor data under the multinomial model, Type I error rates are generally conservative, which in part is due to the sparseness of the data. The correlation structure for the predictor variables is not well retained on multiply-imputed data from small samples with more than 50% missing data with this model. For mixed continuous and dichotomous predictor data, the results are similar to those found under the multivariate normal model for continuous data and under the multinomial model for dichotomous data. With all data types, a fully-observed variable included with variables subject to missingness in the multiple imputation process and subsequent statistical analysis provided liberal (larger than nominal values) Type I error rates under a specific pattern of missing data. It is suggested that future studies focus on the effects of multiple imputation in multivariate settings with more realistic data characteristics and a variety of multivariate analyses, assessing both Type I error and power. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Maximizing data quality may be especially difficult in trauma-related clinical research. Strategies are needed to improve data quality and assess the impact of data quality on clinical predictive models. This study had two objectives. The first was to compare missing data between two multi-center trauma transfusion studies: a retrospective study (RS) using medical chart data with minimal data quality review and the PRospective Observational Multi-center Major Trauma Transfusion (PROMMTT) study with standardized quality assurance. The second objective was to assess the impact of missing data on clinical prediction algorithms by evaluating blood transfusion prediction models using PROMMTT data. RS (2005-06) and PROMMTT (2009-10) investigated trauma patients receiving ≥ 1 unit of red blood cells (RBC) from ten Level I trauma centers. Missing data were compared for 33 variables collected in both studies using mixed effects logistic regression (including random intercepts for study site). Massive transfusion (MT) patients received ≥ 10 RBC units within 24h of admission. Correct classification percentages for three MT prediction models were evaluated using complete case analysis and multiple imputation based on the multivariate normal distribution. A sensitivity analysis for missing data was conducted to estimate the upper and lower bounds of correct classification using assumptions about missing data under best and worst case scenarios. Most variables (17/33=52%) had <1% missing data in RS and PROMMTT. Of the remaining variables, 50% demonstrated less missingness in PROMMTT, 25% had less missingness in RS, and 25% were similar between studies. Missing percentages for MT prediction variables in PROMMTT ranged from 2.2% (heart rate) to 45% (respiratory rate). For variables missing >1%, study site was associated with missingness (all p≤0.021). Survival time predicted missingness for 50% of RS and 60% of PROMMTT variables. MT models complete case proportions ranged from 41% to 88%. Complete case analysis and multiple imputation demonstrated similar correct classification results. Sensitivity analysis upper-lower bound ranges for the three MT models were 59-63%, 36-46%, and 46-58%. Prospective collection of ten-fold more variables with data quality assurance reduced overall missing data. Study site and patient survival were associated with missingness, suggesting that data were not missing completely at random, and complete case analysis may lead to biased results. Evaluating clinical prediction model accuracy may be misleading in the presence of missing data, especially with many predictor variables. The proposed sensitivity analysis estimating correct classification under upper (best case scenario)/lower (worst case scenario) bounds may be more informative than multiple imputation, which provided results similar to complete case analysis.^