4 resultados para discrete and continuum models
em DigitalCommons@The Texas Medical Center
Resumo:
Mixture modeling is commonly used to model categorical latent variables that represent subpopulations in which population membership is unknown but can be inferred from the data. In relatively recent years, the potential of finite mixture models has been applied in time-to-event data. However, the commonly used survival mixture model assumes that the effects of the covariates involved in failure times differ across latent classes, but the covariate distribution is homogeneous. The aim of this dissertation is to develop a method to examine time-to-event data in the presence of unobserved heterogeneity under a framework of mixture modeling. A joint model is developed to incorporate the latent survival trajectory along with the observed information for the joint analysis of a time-to-event variable, its discrete and continuous covariates, and a latent class variable. It is assumed that the effects of covariates on survival times and the distribution of covariates vary across different latent classes. The unobservable survival trajectories are identified through estimating the probability that a subject belongs to a particular class based on observed information. We applied this method to a Hodgkin lymphoma study with long-term follow-up and observed four distinct latent classes in terms of long-term survival and distributions of prognostic factors. Our results from simulation studies and from the Hodgkin lymphoma study demonstrated the superiority of our joint model compared with the conventional survival model. This flexible inference method provides more accurate estimation and accommodates unobservable heterogeneity among individuals while taking involved interactions between covariates into consideration.^
Resumo:
Life expectancy has consistently increased over the last 150 years due to improvements in nutrition, medicine, and public health. Several studies found that in many developed countries, life expectancy continued to rise following a nearly linear trend, which was contrary to a common belief that the rate of improvement in life expectancy would decelerate and was fit with an S-shaped curve. Using samples of countries that exhibited a wide range of economic development levels, we explored the change in life expectancy over time by employing both nonlinear and linear models. We then observed if there were any significant differences in estimates between linear models, assuming an auto-correlated error structure. When data did not have a sigmoidal shape, nonlinear growth models sometimes failed to provide meaningful parameter estimates. The existence of an inflection point and asymptotes in the growth models made them inflexible with life expectancy data. In linear models, there was no significant difference in the life expectancy growth rate and future estimates between ordinary least squares (OLS) and generalized least squares (GLS). However, the generalized least squares model was more robust because the data involved time-series variables and residuals were positively correlated. ^
Resumo:
Empirical evidence and theoretical studies suggest that the phenotype, i.e., cellular- and molecular-scale dynamics, including proliferation rate and adhesiveness due to microenvironmental factors and gene expression that govern tumor growth and invasiveness, also determine gross tumor-scale morphology. It has been difficult to quantify the relative effect of these links on disease progression and prognosis using conventional clinical and experimental methods and observables. As a result, successful individualized treatment of highly malignant and invasive cancers, such as glioblastoma, via surgical resection and chemotherapy cannot be offered and outcomes are generally poor. What is needed is a deterministic, quantifiable method to enable understanding of the connections between phenotype and tumor morphology. Here, we critically assess advantages and disadvantages of recent computational modeling efforts (e.g., continuum, discrete, and cellular automata models) that have pursued this understanding. Based on this assessment, we review a multiscale, i.e., from the molecular to the gross tumor scale, mathematical and computational "first-principle" approach based on mass conservation and other physical laws, such as employed in reaction-diffusion systems. Model variables describe known characteristics of tumor behavior, and parameters and functional relationships across scales are informed from in vitro, in vivo and ex vivo biology. We review the feasibility of this methodology that, once coupled to tumor imaging and tumor biopsy or cell culture data, should enable prediction of tumor growth and therapy outcome through quantification of the relation between the underlying dynamics and morphological characteristics. In particular, morphologic stability analysis of this mathematical model reveals that tumor cell patterning at the tumor-host interface is regulated by cell proliferation, adhesion and other phenotypic characteristics: histopathology information of tumor boundary can be inputted to the mathematical model and used as a phenotype-diagnostic tool to predict collective and individual tumor cell invasion of surrounding tissue. This approach further provides a means to deterministically test effects of novel and hypothetical therapy strategies on tumor behavior.
Resumo:
My dissertation focuses on developing methods for gene-gene/environment interactions and imprinting effect detections for human complex diseases and quantitative traits. It includes three sections: (1) generalizing the Natural and Orthogonal interaction (NOIA) model for the coding technique originally developed for gene-gene (GxG) interaction and also to reduced models; (2) developing a novel statistical approach that allows for modeling gene-environment (GxE) interactions influencing disease risk, and (3) developing a statistical approach for modeling genetic variants displaying parent-of-origin effects (POEs), such as imprinting. In the past decade, genetic researchers have identified a large number of causal variants for human genetic diseases and traits by single-locus analysis, and interaction has now become a hot topic in the effort to search for the complex network between multiple genes or environmental exposures contributing to the outcome. Epistasis, also known as gene-gene interaction is the departure from additive genetic effects from several genes to a trait, which means that the same alleles of one gene could display different genetic effects under different genetic backgrounds. In this study, we propose to implement the NOIA model for association studies along with interaction for human complex traits and diseases. We compare the performance of the new statistical models we developed and the usual functional model by both simulation study and real data analysis. Both simulation and real data analysis revealed higher power of the NOIA GxG interaction model for detecting both main genetic effects and interaction effects. Through application on a melanoma dataset, we confirmed the previously identified significant regions for melanoma risk at 15q13.1, 16q24.3 and 9p21.3. We also identified potential interactions with these significant regions that contribute to melanoma risk. Based on the NOIA model, we developed a novel statistical approach that allows us to model effects from a genetic factor and binary environmental exposure that are jointly influencing disease risk. Both simulation and real data analyses revealed higher power of the NOIA model for detecting both main genetic effects and interaction effects for both quantitative and binary traits. We also found that estimates of the parameters from logistic regression for binary traits are no longer statistically uncorrelated under the alternative model when there is an association. Applying our novel approach to a lung cancer dataset, we confirmed four SNPs in 5p15 and 15q25 region to be significantly associated with lung cancer risk in Caucasians population: rs2736100, rs402710, rs16969968 and rs8034191. We also validated that rs16969968 and rs8034191 in 15q25 region are significantly interacting with smoking in Caucasian population. Our approach identified the potential interactions of SNP rs2256543 in 6p21 with smoking on contributing to lung cancer risk. Genetic imprinting is the most well-known cause for parent-of-origin effect (POE) whereby a gene is differentially expressed depending on the parental origin of the same alleles. Genetic imprinting affects several human disorders, including diabetes, breast cancer, alcoholism, and obesity. This phenomenon has been shown to be important for normal embryonic development in mammals. Traditional association approaches ignore this important genetic phenomenon. In this study, we propose a NOIA framework for a single locus association study that estimates both main allelic effects and POEs. We develop statistical (Stat-POE) and functional (Func-POE) models, and demonstrate conditions for orthogonality of the Stat-POE model. We conducted simulations for both quantitative and qualitative traits to evaluate the performance of the statistical and functional models with different levels of POEs. Our results showed that the newly proposed Stat-POE model, which ensures orthogonality of variance components if Hardy-Weinberg Equilibrium (HWE) or equal minor and major allele frequencies is satisfied, had greater power for detecting the main allelic additive effect than a Func-POE model, which codes according to allelic substitutions, for both quantitative and qualitative traits. The power for detecting the POE was the same for the Stat-POE and Func-POE models under HWE for quantitative traits.