3 resultados para diagnostic techniques

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study establishes the extent and relevance of bias of population estimates of prevalence, incidence, and intensity of infection with Schistosoma mansoni caused by the relative sensitivity of stool examination techniques. The population studied was Parcelas de Boqueron in Las Piedras, Puerto Rico, where the Centers for Disease Control, had undertaken a prospective community-based study of infection with S. mansoni in 1972. During each January of the succeeding years stool specimens from this population were processed according to the modified Ritchie concentration (MRC) technique. During January 1979 additional stool specimens were collected from 30 individuals selected on the basis of their mean S. mansoni egg output during previous years. Each specimen was divided into ten 1-gm aliquots and three 42-mg aliquots. The relationship of egg counts obtained with the Kato-Katz (KK) thick smear technique as a function of the mean of ten counts obtained with the MRC technique was established by means of regression analysis. Additionally, the effect of fecal sample size and egg excretion level on technique sensitivity was evaluated during a blind assessment of single stool specimen samples, using both examination methods, from 125 residents with documented S. mansoni infections. The regression equation was: Ln KK = 2.3324 + 0.6319 Ln MRC, and the coefficient of determination (r('2)) was 0.73. The regression equation was then utilized to correct the term "m" for sample size in the expression P ((GREATERTHEQ) 1 egg) = 1 - e('-ms), which estimates the probability P of finding at least one egg as a function of the mean S. mansoni egg output "m" of the population and the effective stool sample size "s" utilized by the coprological technique. This algorithm closely approximated the observed sensitivity of the KK and MRC tests when these were utilized to blindly screen a population of known parasitologic status for infection with S. mansoni. In addition, the algorithm was utilized to adjust the apparent prevalence of infection for the degree of functional sensitivity exhibited by the diagnostic test. This permitted the estimation of true prevalence of infection and, hence, a means for correcting estimates of incidence of infection. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Congestive heart failure has long been one of the most serious medical conditions in the United States; in fact, in the United States alone, heart failure accounts for 6.5 million days of hospitalization each year. One important goal of heart-failure therapy is to inhibit the progression of congestive heart failure through pharmacologic and device-based therapies. Therefore, there have been efforts to develop device-based therapies aimed at improving cardiac reserve and optimizing pump function to meet metabolic requirements. The course of congestive heart failure is often worsened by other conditions, including new-onset arrhythmias, ischemia and infarction, valvulopathy, decompensation, end-organ damage, and therapeutic refractoriness, that have an impact on outcomes. The onset of such conditions is sometimes heralded by subtle pathophysiologic changes, and the timely identification of these changes may promote the use of preventive measures. Consequently, device-based methods could in the future have an important role in the timely identification of the subtle pathophysiologic changes associated with congestive heart failure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the recognition of the importance of evidence-based medicine, there is an emerging need for methods to systematically synthesize available data. Specifically, methods to provide accurate estimates of test characteristics for diagnostic tests are needed to help physicians make better clinical decisions. To provide more flexible approaches for meta-analysis of diagnostic tests, we developed three Bayesian generalized linear models. Two of these models, a bivariate normal and a binomial model, analyzed pairs of sensitivity and specificity values while incorporating the correlation between these two outcome variables. Noninformative independent uniform priors were used for the variance of sensitivity, specificity and correlation. We also applied an inverse Wishart prior to check the sensitivity of the results. The third model was a multinomial model where the test results were modeled as multinomial random variables. All three models can include specific imaging techniques as covariates in order to compare performance. Vague normal priors were assigned to the coefficients of the covariates. The computations were carried out using the 'Bayesian inference using Gibbs sampling' implementation of Markov chain Monte Carlo techniques. We investigated the properties of the three proposed models through extensive simulation studies. We also applied these models to a previously published meta-analysis dataset on cervical cancer as well as to an unpublished melanoma dataset. In general, our findings show that the point estimates of sensitivity and specificity were consistent among Bayesian and frequentist bivariate normal and binomial models. However, in the simulation studies, the estimates of the correlation coefficient from Bayesian bivariate models are not as good as those obtained from frequentist estimation regardless of which prior distribution was used for the covariance matrix. The Bayesian multinomial model consistently underestimated the sensitivity and specificity regardless of the sample size and correlation coefficient. In conclusion, the Bayesian bivariate binomial model provides the most flexible framework for future applications because of its following strengths: (1) it facilitates direct comparison between different tests; (2) it captures the variability in both sensitivity and specificity simultaneously as well as the intercorrelation between the two; and (3) it can be directly applied to sparse data without ad hoc correction. ^