20 resultados para developmental arrest
em DigitalCommons@The Texas Medical Center
Resumo:
The social amoeba, Dictyostelium discoideum, undergoes a remarkable starvation-induced program of development that transforms a population of unicellular amoebae into a fruiting body composed of resistant spores suspended on a stalk. During this development, secreted cAMP drives chemotaxis of the amoebae, leading to their aggregation, and subsequent differentiation and morphogenesis. Four sequentially expressed G protein-coupled receptors (GPCRs) for cAMP play critical roles in this process. The first of these, cAR1, is essential for aggregation as it mediates chemotaxis as well as the propagation of secreted cAMP waves throughout aggregating populations. Ligand-induced internalization has been shown to regulate a variety of GPCRs. However, little was known at the outset of this study about the role of internalization in the regulation of cAR1 function or, for that matter, in developmental systems in general. For this study, cAMP-induced cAR1 internalization was assessed by measuring (1) the reduction of cell surface binding sites for [ 3H]cAMP and (2) the redistribution of YFP-tagged receptors to the cell's interior, cAMP was found to induce little or no loss of ligand binding (LLB) in vegetative cells. However, the ability to induce LLB increased progressively over the initial 6 hrs of development, reaching ∼70% in cells undergoing aggregation. Despite these reductions in surface binding, detectable cAR1-YFP redistribution could be induced by cAMP only after the cells reached the mound stage (10 hrs) and was found to occur naturally by the ensuing slug stage (18 hrs). Site-directed substitution of a cluster of 5 serines in the receptor's cytoplasmic tail that was previously shown to be the principal site of cAMP-induced cAR1 phosphorylation impaired both LLB and receptor redistribution and furthermore resulted in mound-stage developmental arrest, suggesting that phosphorylation of cAR1 is a prerequisite for its internalization and that cAR1 internalization is required for post-aggregative development. To assess the involvement of clathrin mediated endocytosis, Dictyostelium cells lacking the clathrin light chain gene (clc-) or either of two dynamin genes were examined and found to be defective in LLB and, in the case of clc- cells, also cAR1 redistribution and turnover. Furthermore, cAR1 overexpression in clc- cells (like the serine mutant in wild-type cells) promoted developmental arrest in mounds. The mound-arrest phenotype was also recapitulated in a wild-type background by the specific expression of cAR1 in prestalk cells (but not prespore cells), suggesting that development depends critically on internalization and clearance of cAR1 from these cells. Persistent cAR1 expression following aggregation was found to be associated with aberrant expression of prestalk and prespore genes, which may adversely affect development in the prestalk cell lineage. The PI3 kinase-TORC2 signal transduction pathway, known to be important for Dictyostelium chemotaxis and internalization of yeast pheromone receptors, was examined using chemical inhibitors and null cells and found to be necessary for cAR1 internalization. In conclusion, cAR1 was shown to be similar to other GPCRs in that its internalization depends on phosphorylation of cytoplasmic domain serines, utilizes clathrin and dynamin, and involves the TORC2 complex. In addition, the findings presented here that cAR1 internalization is both developmentally regulated and required for normal development represent a novel regulatory paradigm that might pertain to other GPCRs known to play important roles in the development of humans and other metazoans. ^
Resumo:
The p53-family of proteins regulates expression of target genes during tissue development and differentiation. Within the p53-family, p53 and p73 have hepatic-specific functions in development and tumor suppression. Despite a growing list of p53/p73 target genes, very few of these have been studied in vivo, and the knowledge regarding functions of p53 and p73 in normal tissues remains limited. p53+/-p73+/- mice develop hepatocellular carcinoma (HCC), whereas overexpression of p53 in human HCC leads to tumor regression. However, the mechanism of p53/p73 function in liver remains poorly characterized. Here, the model of mouse liver regeneration is used to identify new target genes for p53/p73 in normal quiescent vs. proliferating cells. In response to surgical removal of ~2/3 of liver mass (partial hepatectomy, PH), the remaining hepatocytes exit G0 of cell cycle and undergo proliferation to reestablish liver mass. The hypothesis tested in this work is that p53/p73 functions in cell cycle arrest, apoptosis and senescence are repressed during liver regeneration, and reactivated at the end of the regenerative response. Chromatin immunoprecipitation (ChIP), with a p73-antibody, was used to probe arrayed genomic sequences (ChIP-chip) and uncover 158 potential targets of p73-regulation in normal liver. Global microarray analysis of mRNA levels, at T=0-48h following PH, revealed sets of genes that change expression during regeneration. Eighteen p73-bound genes changed expression after PH. Four of these genes, Foxo3, Jak1, Pea15, and Tuba1 have p53 response elements (p53REs), identified in silico within the upstream regulatory region. Forkhead transcription factor Foxo3 is the most responsive gene among transcription factors with altered expression during regenerative, cellular proliferation. p53 and p73 bind a Foxo3 p53RE and maintain active expression in quiescent liver. During liver regeneration, binding of p53 and p73, recruitment of acetyltransferase p300, and an active chromatin structure of Foxo3 are disrupted, alongside loss of Foxo3 expression. These parameters of Foxo3 regulation are reestablished at completion of liver growth and regeneration, supporting a temporary suspension of p53 and p73 regulatory functions in normal cells during tissue regeneration.
Resumo:
Environmental exposures during sensitive windows of development can reprogram normal physiological responses and alter disease susceptibility later in life in a process known as developmental reprogramming. We have shown that neonatal exposure to the xenoestrogen diethylstilbestrol (DES) can developmentally reprogram the reproductive tract in genetically susceptible Eker rats giving rise to complete penetrance of uterine leiomyoma. Based on this, we hypothesized that xenoestrogens, including genistein (GEN) and bisphenol A (BPA), reprogram estrogen-responsive gene expression in the myometrium and promote the development of uterine leiomyoma. We proposed the mechanism that is responsible for the developmental reprogramming of gene expression was through estrogen (E2)/ xenoestrogen inducedrapid ER signaling, which modifies the histone methyltransferase Enhancer of Zeste homolog 2 (EZH2) via activation of the PI3K/AKT pathway. We further hypothesized that there is a xenostrogen-specific effect on this pathway altering patterns of histone modification, DNA methylation and gene expression. In addition to our novel finding that E2/DES-induced phosphorylation of EZH2 by AKT reduces the levels of H3K27me3 in vitro and in vivo, this work demonstrates in vivo that a brief neonatal exposure to GEN, in contrast to BPA, activates the PI3K/AKT pathway to regulate EZH2 and decreases H3K27me3 levels in the neonatal uterus. Given that H3K27me3 is a repressive mark that has been shown to result in DNA methylation and gene silencing we investigated the methylation of developmentally reprogrammed genes. In support of this evidence, we show that neonatal DES exposure in comparison to VEH, leads to hypomethylation of the promoter of a developmentally reprogrammed gene, Gria2, that become hyper-responsive to estrogen in the adult myometrium indicating vi that DES exposure alter gene expression via chromatin remodeling and loss of DNA methylation. In the adult uterus, GEN and BPA exposure developmentally reprogrammed expression of estrogen-responsive genes in a manner opposite of one another, correlating with our previous data. Furthermore, the ability of GEN and BPA to developmental reprogram gene expression correlated with tumor incidence and multiplicity. These data show that xenoestrogens have unique effects on the activation of non-genomic signaling in the developing uterus that promotes epigenetic and genetic alterations, which are predictive of developmental reprogramming and correlate with their ability to modulate hormone-dependent tumor development.
Resumo:
Xenopus ARVCF (xARVCF), a member of p120-catenin subfamily, binds cadherin cytoplasmic domains to enhance cadherin metabolic stability, or when dissociated, modulates Rho-family GTPases. We previously found that xARVCF binds directly to Xenopus KazrinA (xKazrinA), a widely expressed, conserved protein that bears little homology to established protein families. xKazrinA is also known to influence keratinocyte proliferation-differentiation and cytoskeletal activity. In my study, I first evaluated the expression pattern of endogenous Kazrin RNA and protein in Xenopus embryogenesis as well as in adult tissues. We then collaboratively predicted the helical structure of Kazrin’s coiled-coil domain, and I obtained evidence of Kazrin’s dimerization/oligomerization. In considering the intracellular localization of the xARVCF-catenin:xKazrin complex, I did not resolve xKazrinA in a larger ternary complex with cadherin, nor did I detect its co-precipitation with core desmosomal components. Instead, screening revealed that xKazrinA binds spectrin. This suggested a potential means by which xKazrinA localizes to cell-cell junctions, and indeed, biochemical assays confirmed a ternary xARVCF:xKazrinA:xβ2-spectrin complex. Functionally, I demonstrated that xKazrin stabilizes cadherins by negatively modulating the RhoA small-GTPase. I further revealed that xKazrinA binds to p190B RhoGAP (an inhibitor of RhoA), and enhances p190B’s association with xARVCF. Supporting their functional interaction in vivo, Xenopus embryos depleted of xKazrin exhibited ectodermal shedding, a phenotype that could be rescued with exogenous xARVCF. Cell shedding appeared to be caused by RhoA activation, which consequently altered actin organization and cadherin function. Indeed, I was capable of rescuing Kazrin depletion with ectopic expression of p190B RhoGAP. In addition, I obtained evidence that xARVCF and xKazrin participate in craniofacial development, with effects observed upon the neural crest. Finally, I found that xKazrinA associates further with delta-catenin and p0071-catenin, but not with p120-catenin, suggesting that Kazrin interacts selectively with additional members of the p120-catenin sub-family. Taken together, my study supports Kazrin’s essential role in development, and reveals KazrinA’s biochemical and functional association with ARVCF-catenin, spectrin and p190B RhoGAP.
Resumo:
Catenins have diverse and powerful roles in embryogenesis, homeostasis or disease progression, as best exemplified by the well-known beta-catenin. The less studied delta-catenin likewise contains a central Armadillo-domain. In common with other p120 sub-class members, it acts in a variety of intracellular compartments and modulates cadherin stability, small GTPase activities and gene transcription. In mammals, delta-catenin exhibits neural specific expression, with its knock-out in mice correspondingly producing cognitive defects and synaptic dysfunctions. My work instead employed the amphibian, Xenopus laevis, to explore delta-catenin’s physiological functions in a distinct vertebrate system. Initial isolation and characterization indicated delta-catenin’s expression in Xenopus. Unlike the pattern observed for mammals, delta-catenin was detected in most adult Xenopus tissues, although enriched in embryonic structures of neural fate as visualized using RNA in-situ hybridization. To determine delta-catenin’s requirement in amphibian development, I employed anti-sense morpholinos to knock-down gene products, finding that delta-catenin depletion results in developmental defects in gastrulation, neural crest migration and kidney tubulogenesis, phenotypes that were specific based upon rescue experiments. In biochemical and cellular assays, delta-catenin knock-down reduced cadherin levels and cell adhesion, and impaired activation of RhoA and Rac1, small GTPases that regulate actin dynamics and morphogenetic movements. Indeed, exogenous C-cadherin, or dominant-negative RhoA or dominant-active Rac1, significantly rescued delta-catenin depletion. Thus, my results indicate delta-catenin’s essential roles in Xenopus development, with contributing functional links to cadherins and Rho family small G proteins. In examining delta-catenin’s nuclear roles, I identified delta-catenin as an interacting partner and substrate of the caspase-3 protease, which plays critical roles in apoptotic as well as non-apoptotic processes. Delta-catenin’s interaction with and sensitivity to caspase-3 was confirmed using assays involving its cleavage in vitro, as well as within Xenopus apoptotic extracts or mammalian cell lines. The cleavage site, a highly conserved caspase consensus motif (DELD) within Armadillo-repeat 6 of delta-catenin, was identified through peptide sequencing. Cleavage thus generates an amino- (1-816) and carboxyl-terminal (817-1314) fragment each containing about half of the central Armadillo-domain. I found that cleavage of delta-catenin both abolishes its association with cadherins, and impairs its ability to modulate small GTPases. Interestingly, the carboxyl-terminal fragment (817-1314) possesses a conserved putative nuclear localization signal that I found is needed to facilitate delta-catenin’s nuclear targeting. To probe for novel nuclear roles of delta-catenin, I performed yeast two-hybrid screening of a mouse brain cDNA library, resolving and then validating its interaction with an uncharacterized KRAB family zinc finger protein I named ZIFCAT. My results indicate that ZIFCAT is nuclear, and suggest that it may associate with DNA as a transcriptional repressor. I further determined that other p120 sub-class catenins are similarly cleaved by caspase-3, and likewise bind ZIFCAT. These findings potentially reveal a simple yet novel signaling pathway based upon caspase-3 cleavage of p120 sub-family members, facilitating the coordinate modulation of cadherins, small GTPases and nuclear functions. Together, my work suggested delta-catenin’s essential roles in Xenopus development, and has revealed its novel contributions to cell junctions (via cadherins), cytoskeleton (via small G proteins), and nucleus (via ZIFCAT). Future questions include the larger role and gene targets of delta-catenin in nucleus, and identification of upstream signaling events controlling delta-catenin’s activities in development or disease progression.
Resumo:
The development of the brain and its underlying circuitry is dependent on the formation of trillions of chemical synapses, which are highly specialized contacts that regulate the flow of information from one neuron to the next. It is through these synaptic connections that neurons wire together into networks capable of performing specific tasks, and activity-dependent changes in their structural and physiological state is one way that the brain is thought to adapt and store information. At the ultrastructural level, developmental and activity-dependent changes in the size and shape of dendritic spines have been well documented, and it is widely believed that structural changes in spines are a hallmark sign of synapse maturation and alteration of synaptic physiology. While changes in spine structure have been studied extensively, changes in one of its most prominent components, the postsynaptic density (PSD), have largely evaded observation. The PSD is a protein-rich organelle on the cytoplasmic side of the postsynaptic membrane, where it sits in direct opposition to the presynaptic terminal. The PSD functions both to cluster neurotransmitter receptors at the cell surface as well as organize the intracellular signaling molecules responsible for transducing extracellular signals to the postsynaptic cell. Much is known about the chemical composition of the PSD, but the structural arrangement of its molecular components is not well documented. Adding to the difficulty of understanding such a complex mass of protein machinery is the fact that its protein composition is known to change in response to synaptic activity, meaning that its structure is plastic and no two PSDs are identical. Here, immuno-gold labeling and electron tomography of PSDs isolated throughout development was used to track changes in both the structure and molecular composition of the PSD. State-of-the-art cryo-electron tomography was used to study the fine structure of the PSD during development, and provides an unprecedented glimpse into its molecular architecture in an un-fixed, unstained and hydrated state. Through this analysis, large structural and compositional changes are apparent and suggest a model by which the PSD is first assembled as a mesh-like lattice of proteins that function as support for the later recruitment of various PSD components. Spatial analysis of the recruitment of proteins into the PSD demonstrated that its assembly has an underlying order.
Resumo:
Morphogenesis is the process by which the 3-dimensional structure of the developing embryo takes shape. We are studying xlcaax-1, a gene whose product can be used as a molecular marker for several morphogenetic events. We report here the cellular and subcellular localization of the xlcaax-1 protein during development of Xenopus laevis. Whole mount immunocytochemistry and immunoperoxidase staining of tissue sections showed that during development the xlcaax-1 protein accumulation was coincident with the differentiation of the epidermis, pronephros and mesonephros. In the pronephros and mesonephros the xlcaax-1 protein was localized to the basolateral membrane of differentiated tubule epithelial cells. Thus, the xlcaax-1 protein served as a marker for tubule formation and polarization during Xenopus kidney development. Xlcaax-1 may also be used as a marker for the functional differentiation of the epidermis and the epidermally derived portions of the lens and some cranial nerves. The xlcaax-1 protein was most abundant in kidney and immunogold EM analysis showed that the xlcaax-1 protein was highly enriched in the basal infoldings of the basolateral membrane of the epithelial cells in adult kidney distal tubules. The xlcaax-1 protein was also localized in other ion transporting epithelia. The localization pattern and preliminary functional assays of xlcaax-1 suggest that the protein may function in association with an ion transport channel or pump.^ Cell migration and cell-cell interactions play important roles in numerous processes during morphogenesis. One of these is the formation of the pronephric (wolffian) duct (PD), which connects the pronephros to the cloaca. It is currently accepted that in most amphibians the pronephric duct is formed by active migration of the pronephric duct rudiment (PDR) cells along a pre-determined pathway. However, there is evidence that in Xenopus, the PD may be formed entirely by in situ segregation of cells out of the lateral mesoderm. In this study, we showed, using PDR ablation and X. laevis - X. borealis chimeras, that PD elongation in Xenopus required both active cell migration and an induced recruitment of cells from the posterior lateral plate mesoderm. We also showed that PDR cell migration was limited to only a few stages during development and that this temporal control is due, at least in part, to changes in the competence of the PD pathway to support cell migration. In addition, our data suggested that an alkaline phosphatase (APase) adhesion gradient may be involved in determining this competence. ^
Resumo:
Genetic analysis is a powerful method for analyzing the function of specific genes in development. I sought to identify novel genes in the mouse using a genetic analysis relying on the expression pattern and phenotype of mutated genes. To this end, I have conducted a gene trap screen using the vector $\rm SA\beta geo,$ a promoterless DNA construct that encodes a fusion protein with lacZ and neomycin resistance activities. Productive integration and expression of the $\beta$geo protein in embryonic stem (ES) cells requires integration into an active transcription unit. The endogenous regulatory elements direct reporter gene expression which reflects the expression of the endogenous gene. Of eight mouse lines generated from gene trap ES cell clones, four showed differential regulation of $\beta$geo activity during embryogenesis. These four were analyzed in more detail.^ Three of the lines RNA 1, RNA2 and RNA 3 had similar expression patterns, within subsets of cells in sites of embryonic hematopoiesis. Cloning of the trapped genes revealed that all three integrations had occurred within 45S rRNA precursor transcription units. These results imply that there exists in these cells some mechanism responsible for the efficient production of the $\beta$geo protein from an RNA polymerase I transcript that is not present in most of the cells in the embryo.^ The fourth line, GT-2, showed widespread, dynamic expression. Many of the sites of expression were important classic embryonic induction systems. Cloning of the sequences fused to the $5\sp\prime$ end of the $\beta$geo sequence revealed that the trapped gene contained significant sequence homology with a previously identified human sequence HumORF5. An open reading frame of this sequence is homologous to a group of eukaryotic proteins that are members of the RNA helicase superfamily I.^ Analysis of the gene trap lines suggests that potentially novel developmental mechanisms have been uncovered. In the case of RNA 1, 2 and 3, the differential production of ribosomal RNAs may be required for differentiation or function of the $\beta$geo positive hematopoietic cells. In the GT-2 line, a previously unsuspected temporal and spatial regulation of a putative RNA helicase implies a role for this activity during specific aspects of mouse development. ^
Resumo:
Many of the tumorigenic effects that result from neonatal exposure to both natural and synthetic estrogens resemble those found in humans exposed to diethylstilbestrol (DES) in utero. Using this established DES neonatal mouse model, my goal was to investigate long-term molecular and morphological effects of certain polychlorinated biphenyls (PCBs) that are weakly estrogenic in adult mice. Focusing on the cervicovaginal (CV) tract, since this is where tumors develop in the BALB/c mouse, I first assessed the 17β-estradiol (E2) dose-response for expression of lactoferrin (LTF). LTF is a highly inducible estrogen biomarker that is permanently altered in uteri from neonatally treated mice. Treatments were administered via 5 subcutaneous injections beginning within 16 hrs after birth, days 1–5. ^ The ontogeny of LTF expression from mouse CV tracts was determined by examining three different stages of life: pups, immature, and mature mice. Northern RNA analysis and immunohistochemistry showed that neonatal E 2 treatment both increases and decreases LTF expression. Early expression of LTF in the CV tract at all doses occurred in pups. In both immature and adult mice, increased LTF expression was dependent on whether E2 induced ovary-dependent or ovary-independent persistent vaginal cornification. ^ Next, I studied biological responses from neonatally PCB exposed adult mice. As expected, using a neonatal uterine bioassay I showed that 2 ′4′6′-trichloro-4-biphenylol (OH-PCB-30), 2′3′4′ 5-tetrachloro-4-biphenyloI (OH-PCB-61), and OH-PCB-30/61 (50/50 mixture), were estrogenic causing a dose-dependent increase in uterine weight. ^ Long-term effects of OH-PCB 30 [200 μg/pup/day] were most similar to E2 as seen by an increased uterine wet weight in day 50 mice similar to E2 [5 μg/pup/day] (141% and 140% of control, respectively). Another similarity between OH-PCB 30 and E2 neonatally treated mice was found in those sacrificed at 20 months of age. At these same doses CV tract squamous cell carcinoma induction was 43% of E2 treated mice and 47% of OH-PCB 30 treated mice. Differences were noted in adenoaquamous; cell carcinoma development, where 16% of OH-PCB-30 neonatally treated mice developed tumors versus 8% for E2. Based on these results using the neonatal mouse model, I conclude that the OH-PCBs tested are strongly estrogenic and tumorigenic showing dose-response relationships when exposure occurs during development of the reproductive tract in mice. These results may have important implications for risk assessment in determining the effects of xenoestrogens exposure early versus later in life. ^
Resumo:
Myxococcus xanthus is a Gram-negative soil bacterium that undergoes multicellular development when high-density cells are starved on a solid surface. Expression of the 4445 gene, predicted to encode a periplasmic protein, commences 1.5 h after the initiation of development and requires starvation and high density conditions. Addition of crude or boiled supernatant from starving high-density cells restored 4445 expression to starving low-density cells. Addition of L-threonine or L-isoleucine to starving low-density cells also restored 4445 expression, indicating that the high-density signaling activity present in the supernatant might be composed of extracellular amino acids or small peptides. To investigate the circuitry integrating these starvation and high-density signals, the cis- and trans-acting elements controlling 4445 expression were identified. The 4445 transcription start site was determined by primer extension analysis to be 58 by upstream of the predicted translation start site. The promoter region contained a consensus sequence characteristic of e&barbelow;xtrac&barbelow;ytoplasmic f&barbelow;unction (ECF) sigma factor-dependent promoters, suggesting that 4445 expression might be regulated by an ECF sigma factor-dependent pathway, which are known to respond to envelope stresses. The small size of the minimum regulatory region, identified by 5′-end deletion analysis as being only 66 by upstream of the transcription start site, suggests that RNA polymerase could be the sole direct regulator of 4445 expression. To identify trans-acting negative regulators of 4445 expression, a strain containing a 4445-lacZ was mutagenized using the Himar1-tet transposon. The four transposon insertions characterized mapped to an operon encoding a putative ECF sigma factor, ecfA; an anti-sigma factor, reaA; and a negative regulator, reaB. The reaA and the reaB mutants expressed 4445 during growth and development at levels almost 100-fold higher than wild type, indicating that these genes encode negative regulators. The ecfA mutant expressed 4445-lacZ at basal levels, indicating that ecfA is a positive regulator. High Mg2+ concentrations over-stimulated this ecfA pathway possibly due to the depletion of exopolysaccharides and assembled type IV pili. These data indicate that the ecfA operon encodes a new regulatory stress pathway that integrates and transduces starvation and cell density cues during early development and is also responsive to cell-surface alterations.^
Resumo:
Epidemiological studies have led to the hypothesis that major risk factors for developing diseases such as hypertension, cardiovascular disease and adult-onset diabetes are established during development. This developmental programming hypothesis proposes that exposure to an adverse stimulus or insult at critical, sensitive periods of development can induce permanent alterations in normal physiological processes that lead to increased disease risk later in life. For cancer, inheritance of a tumor suppressor gene defect confers a high relative risk for disease development. However, these defects are rarely 100% penetrant. Traditionally, gene-environment interactions are thought to contribute to the penetrance of tumor suppressor gene defects by facilitating or inhibiting the acquisition of additional somatic mutations required for tumorigenesis. The studies presented herein identify developmental programming as a distinctive type of gene-environment interaction that can enhance the penetrance of a tumor suppressor gene defect in adult life. Using rats predisposed to uterine leiomyoma due to a germ-line defect in one allele of the tuberous sclerosis complex 2 (Tsc-2) tumor suppressor gene, these studies show that early-life exposure to the xenoestrogen, diethylstilbestrol (DES), during development of the uterus increased tumor incidence, multiplicity and size in genetically predisposed animals, but failed to induce tumors in wild-type rats. Uterine leiomyomas are ovarian-hormone dependent tumors that develop from the uterine myometrium. DES exposure was shown to developmentally program the myometrium, causing increased expression of estrogen-responsive genes prior to the onset of tumors. Loss of function of the normal Tsc-2 allele remained the rate-limiting event for tumorigenesis; however, tumors that developed in exposed animals displayed an enhanced proliferative response to ovarian steroid hormones relative to tumors that developed in unexposed animals. Furthermore, the studies presented herein identify developmental periods during which target tissues are maximally susceptible to developmental programming. These data suggest that exposure to environmental factors during critical periods of development can permanently alter normal physiological tissue responses and thus lead to increased disease risk in genetically susceptible individuals. ^
Resumo:
Expression of the structural genes for the anthrax toxin proteins is coordinately controlled by host-related signals such as elevated CO2 , and the trans-acting positive regulator, AtxA. No specific binding of AtxA to the toxin gene promoters has been demonstrated and no sequence-based similarities are apparent in the promoter regions of toxin genes. We hypothesized that the toxin genes possess common structural features that are required for positive regulation. To test this hypothesis, I performed an extensive characterization of the toxin gene promoters. I determined the minimal sequences required for atxA-mediated toxin gene expression and compared these sequences for structural similarities. In silico modeling and in vitro experiments indicated significant curvature within these regions. Random mutagenesis revealed that point mutations associated with reduced transcriptional activity, mostly mapped to areas of high curvature. This work enabled the identification of two potential cis-acting elements implicated in AtxA-mediated regulation of the toxin genes. In addition to the growth condition requirements and AtxA, toxin gene expression is under growth phase regulation. The transition state regulator AbrB represses atxA expression to influence toxin synthesis. Here I report that toxin gene expression also requires sigH, a gene encoding the RNA polymerase sigma factor associated with development in B. subtilis. In the well-studied B. subtilis system, σH is part of a feedback control pathway that involves AbrB and the major response regulator of sporulation initiation, Spo0A. My data indicate that in B. anthracis, regulatory relationships exist between these developmental regulators and atxA . Interestingly, during growth in toxin-inducing conditions, sigH and abrB expression deviates from that described for B. subtilis, affecting expression of the atxA gene. These findings, combined with previous observations, suggest that the steady state level of atxA expression is critical for optimal toxin gene transcription. I propose a model whereby, under toxin-inducing conditions, control of toxin gene expression is fine-tuned by the independent effects of the developmental regulators on the expression of atxA . The growth condition-dependent changes in expression of these regulators may be crucial for the correct timing and uninterrupted expression of the toxin genes during infection. ^
Resumo:
The ability to regulate cell cycle progression is one of the differences that separates normal from tumor cells. A protein, which is frequently mutated or deleted in a majority of tumor cells, is the retinoblastoma protein (pRb). Previously, we reported that normal cells, which have a wild-type Rb pathway, can be reversibly arrested in the G1 phase of the cell cycle by staurosporine (ST), while tumor cells were unaffected by this treatment. As a result, ST may be used to protect normal cells against the toxic affects of chemotherapy. Here we set out to determine the mechanism(s) by which ST can mediate a reversible G1 arrest in pRb positive cells. To this end, we used an isogenic cell model system of normal human mammary epithelial cells (HMEC) with either intact pRb+ (p53-) or p53+ (pRb-) treated with ST. Our results show that pRb+ cells treated with low concentrations of ST, arrested in the G1 phase of the cell cycle; however, in pRb - cells there was no response. This was verified as a true G 1 arrest in pRb+ cells by two different methods for monitoring cell cycle kinetics and in two additional model systems for Rb (i.e. pRb -/- mouse embryo fibroblasts, and downregulation of RB with siRNA). Our results indicated that ST-mediated G1 arrest required pRb, which in turn initiated a cascade of events leading to inhibition of CDK4 and CDK2 activities and up-regulation of p21 protein. Further assessment of this pathway revealed the novel finding that Chk1 expression and activity were required for the Rb-dependent, ST-mediated G1 arrest. In fact, overexpression of Chk1 facilitated recovery from ST-mediated G1 arrest, an effect only observed in RB+ cells. Collectively, our data suggest pRb is able to cooperate with Chk1 to mediate a G1 arrest in pRb+ cells, but not in pRb- cells. The elucidation of this pathway can help identify novel agents that can be used to protect cancer patients against the debilitating affects of chemotherapy, by targeting only the normal proliferating cells in the body that are otherwise destroyed. ^
Resumo:
"Slow Learners" is a term used to describe children with an IQ range of 70-89 on a standardized individual intelligence test (i.e. with a standard deviation of either 15 or 16). They have above retarded, but below average intelligence and potential to learn. If the factors associated with the etiology of slow learning in children can be identified, it may be possible to hypothesize causal relationships which can be tested by intervention studies specifically designed to prevent slow learning. If effective, these may ultimately reduce the incidence of school dropouts and their cost to society. To date, there is little information about variables which may be etiologically significant. In an attempt to identify such etiologic factors this study examines the sociodemographic characteristics, prenatal history (hypertension, smoking, infections, medication, vaginal bleeding, etc.), natal history (length of delivery, Apgar score, birth trauma, resuscitation, etc.), neonatal history (infections, seizures, head trauma, etc.), developmental history (health problems, developmental milestones and growth during infancy and early childhood), and family history (educational level of the parents, occupation, history of similar condition in the family, etc.) of a series of children defined as slow learners. The study is limited to children from middle to high socioeconomic families in order to exclude the possible confounding variable of low socioeconomic status, and because a descriptive study of this group has not been previously reported. ^