5 resultados para desquamation molecular dynamics, computer aided drug design

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Development of homology modeling methods will remain an area of active research. These methods aim to develop and model increasingly accurate three-dimensional structures of yet uncrystallized therapeutically relevant proteins e.g. Class A G-Protein Coupled Receptors. Incorporating protein flexibility is one way to achieve this goal. Here, I will discuss the enhancement and validation of the ligand-steered modeling, originally developed by Dr. Claudio Cavasotto, via cross modeling of the newly crystallized GPCR structures. This method uses known ligands and known experimental information to optimize relevant protein binding sites by incorporating protein flexibility. The ligand-steered models were able to model, reasonably reproduce binding sites and the co-crystallized native ligand poses of the β2 adrenergic and Adenosine 2A receptors using a single template structure. They also performed better than the choice of template, and crude models in a small scale high-throughput docking experiments and compound selectivity studies. Next, the application of this method to develop high-quality homology models of Cannabinoid Receptor 2, an emerging non-psychotic pain management target, is discussed. These models were validated by their ability to rationalize structure activity relationship data of two, inverse agonist and agonist, series of compounds. The method was also applied to improve the virtual screening performance of the β2 adrenergic crystal structure by optimizing the binding site using β2 specific compounds. These results show the feasibility of optimizing only the pharmacologically relevant protein binding sites and applicability to structure-based drug design projects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Throughout the United States, there are massive initiatives in place to reform healthcare through the implementation of electronic health records. The goals are to improve patient care through improved access to records, the improvement of business and reimbursement processes, streamlining of clinician workflows for increased efficiency, and reducing the variability in the delivery of patient care. [See PDF for complete abstract]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Withdrawal reflexes of the mollusk Aplysia exhibit sensitization, a simple form of long-term memory (LTM). Sensitization is due, in part, to long-term facilitation (LTF) of sensorimotor neuron synapses. LTF is induced by the modulatory actions of serotonin (5-HT). Pettigrew et al. developed a computational model of the nonlinear intracellular signaling and gene network that underlies the induction of 5-HT-induced LTF. The model simulated empirical observations that repeated applications of 5-HT induce persistent activation of protein kinase A (PKA) and that this persistent activation requires a suprathreshold exposure of 5-HT. This study extends the analysis of the Pettigrew model by applying bifurcation analysis, singularity theory, and numerical simulation. Using singularity theory, classification diagrams of parameter space were constructed, identifying regions with qualitatively different steady-state behaviors. The graphical representation of these regions illustrates the robustness of these regions to changes in model parameters. Because persistent protein kinase A (PKA) activity correlates with Aplysia LTM, the analysis focuses on a positive feedback loop in the model that tends to maintain PKA activity. In this loop, PKA phosphorylates a transcription factor (TF-1), thereby increasing the expression of an ubiquitin hydrolase (Ap-Uch). Ap-Uch then acts to increase PKA activity, closing the loop. This positive feedback loop manifests multiple, coexisting steady states, or multiplicity, which provides a mechanism for a bistable switch in PKA activity. After the removal of 5-HT, the PKA activity either returns to its basal level (reversible switch) or remains at a high level (irreversible switch). Such an irreversible switch might be a mechanism that contributes to the persistence of LTM. The classification diagrams also identify parameters and processes that might be manipulated, perhaps pharmacologically, to enhance the induction of memory. Rational drug design, to affect complex processes such as memory formation, can benefit from this type of analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alzheimer's disease (AD) is characterized by the cerebral accumulation of misfolded and aggregated amyloid-beta protein (Abeta). Disease symptoms can be alleviated, in vitro and in vivo, by 'beta-sheet breaker' pentapeptides that reduce plaque load. However the peptide nature of these compounds, made them biologically unstable and unable to penetrate membranes with high efficiency. The main goal of this study was to use computational methods to identify small molecule mimetics with better drug-like properties. For this purpose, the docked conformations of the active peptides were used to identify compounds with similar activities. A series of related beta-sheet breaker peptides were docked to solid state NMR structures of a fibrillar form of Abeta. The lowest energy conformations of the active peptides were used to design three dimensional (3D)-pharmacophores, suitable for screening the NCI database with Unity. Small molecular weight compounds with physicochemical features and a conformation similar to the active peptides were selected, ranked by docking and biochemical parameters. Of 16 diverse compounds selected for experimental screening, 2 prevented and reversed Abeta aggregation at 2-3microM concentration, as measured by Thioflavin T (ThT) fluorescence and ELISA assays. They also prevented the toxic effects of aggregated Abeta on neuroblastoma cells. Their low molecular weight and aqueous solubility makes them promising lead compounds for treating AD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tumor necrosis factor (TNF)-Receptor Associated Factors (TRAFs) are a family of signal transducer proteins. TRAF6 is a unique member of this family in that it is involved in not only the TNF superfamily, but the toll-like receptor (TLR)/IL-1R (TIR) superfamily. The formation of the complex consisting of Receptor Activator of Nuclear Factor κ B (RANK), with its ligand (RANKL) results in the recruitment of TRAF6, which activates NF-κB, JNK and MAP kinase pathways. TRAF6 is critical in signaling with leading to release of various growth factors in bone, and promotes osteoclastogenesis. TRAF6 has also been implicated as an oncogene in lung cancer and as a target in multiple myeloma. In the hopes of developing small molecule inhibitors of the TRAF6-RANK interaction, multiple steps were carried out. Computational prediction of hot spot residues on the protein-protein interaction of TRAF6 and RANK were examined. Three methods were used: Robetta, KFC2, and HotPoint, each of which uses a different methodology to determine if a residue is a hot spot. These hot spot predictions were considered the basis for resolving the binding site for in silico high-throughput screening using GOLD and the MyriaScreen database of drug/lead-like compounds. Computationally intensive molecular dynamics simulations highlighted the binding mechanism and TRAF6 structural changes upon hit binding. Compounds identified as hits were verified using a GST-pull down assay, comparing inhibition to a RANK decoy peptide. Since many drugs fail due to lack of efficacy and toxicity, predictive models for the evaluation of the LD50 and bioavailability of our TRAF6 hits, and these models can be used towards other drugs and small molecule therapeutics as well. Datasets of compounds and their corresponding bioavailability and LD50 values were curated based, and QSAR models were built using molecular descriptors of these compounds using the k-nearest neighbor (k-NN) method, and quality of these models were cross-validated.