5 resultados para depression,
em DigitalCommons@The Texas Medical Center
Resumo:
The neuropeptide Phe-Met-Arg-Phe-NH(2) (FMRFa) can induce transcription-dependent long-term synaptic depression (LTD) in Aplysia sensorimotor synapses. We investigated the role of the ubiquitin-proteasome system and the regulation of one of its components, ubiquitin C-terminal hydrolase (ap-uch), in LTD. LTD was sensitive to presynaptic inhibition of the proteasome and was associated with upregulation of ap-uch mRNA and protein. This upregulation appeared to be mediated by CREB2, which is generally regarded as a transcription repressor. Binding of CREB2 to the promoter region of ap-uch was accompanied by histone hyperacetylation, suggesting that CREB2 cannot only inhibit but also promote gene expression. CREB2 was phosphorylated after FMRFa, and blocking phospho-CREB2 blocked LTD. In addition to changes in the expression of ap-uch, the synaptic vesicle-associated protein synapsin was downregulated in LTD in a proteasome-dependent manner. These results suggest that proteasome-mediated protein degradation is engaged in LTD and that CREB2 may act as a transcription activator under certain conditions.
Resumo:
Not enough research efforts on depression have been carried out up to now in Latin America. The knowledge that has resulted from research activities in the United States or Europe offers limited generalizability to other regions of the world, including Latin America. In the Andean highlands of Ecuador, we found very high rates of moderate and severe depressive symptoms, a finding that must be interpreted within its cultural context. Somatic manifestations of depression predominated over cognitive manifestations, and higher education level was protective against depression. These findings call for an appreciation of culturally-specific manifestations of depression and the social factors that influence them. These factors must be further studied in order to give them the deserved priority, allocate resources appropriately, and formulate innovative psychosocial interventions.
Resumo:
Familial hemiplegic migraine type 1 (FHM1) is an autosomal dominant subtype of migraine with aura that is associated with hemiparesis. As with other types of migraine, it affects women more frequently than men. FHM1 is caused by mutations in the CACNA1A gene, which encodes the alpha1A subunit of Cav2.1 channels; the R192Q mutation in CACNA1A causes a mild form of FHM1, whereas the S218L mutation causes a severe, often lethal phenotype. Spreading depression (SD), a slowly propagating neuronal and glial cell depolarization that leads to depression of neuronal activity, is the most likely cause of migraine aura. Here, we have shown that transgenic mice expressing R192Q or S218L FHM1 mutations have increased SD frequency and propagation speed; enhanced corticostriatal propagation; and, similar to the human FHM1 phenotype, more severe and prolonged post-SD neurological deficits. The susceptibility to SD and neurological deficits is affected by allele dosage and is higher in S218L than R192Q mutants. Further, female S218L and R192Q mutant mice were more susceptible to SD and neurological deficits than males. This sex difference was abrogated by ovariectomy and senescence and was partially restored by estrogen replacement, implicating ovarian hormones in the observed sex differences in humans with FHM1. These findings demonstrate that genetic and hormonal factors modulate susceptibility to SD and neurological deficits in FHM1 mutant mice, providing a potential mechanism for the phenotypic diversity of human migraine and aura.
Resumo:
The neuropeptide Phe-Met-Arg-Phe-NH(2) (FMRFa) can induce transcription-dependent long-term synaptic depression (LTD) in Aplysia sensorimotor synapses. We investigated the role of the ubiquitin-proteasome system and the regulation of one of its components, ubiquitin C-terminal hydrolase (ap-uch), in LTD. LTD was sensitive to presynaptic inhibition of the proteasome and was associated with upregulation of ap-uch mRNA and protein. This upregulation appeared to be mediated by CREB2, which is generally regarded as a transcription repressor. Binding of CREB2 to the promoter region of ap-uch was accompanied by histone hyperacetylation, suggesting that CREB2 cannot only inhibit but also promote gene expression. CREB2 was phosphorylated after FMRFa, and blocking phospho-CREB2 blocked LTD. In addition to changes in the expression of ap-uch, the synaptic vesicle-associated protein synapsin was downregulated in LTD in a proteasome-dependent manner. These results suggest that proteasome-mediated protein degradation is engaged in LTD and that CREB2 may act as a transcription activator under certain conditions.
Resumo:
Background. This study was planned at a time when important questions were being raised about the adequacy of using one hormone to treat hypothyroidism instead of two. Specifically, this trial aimed to replicate prior findings which suggested that substituting 12.5 μg of liothyronine for 50 μg of levothyroxine might improve mood, cognition, and physical symptoms. Additionally, this trial aimed to extend findings to fatigue. ^ Methods. A randomized, double-blind, two-period, crossover design was used. Hypothyroid patients stabilized on levothyroxine were invited to participate. Thirty subjects were recruited and randomized. Sequence one received their standard levothyroxine dose in one capsule and placebo in another during the first six weeks. Sequence two received their usual levothyroxine dose minus 50 μg in one capsule and 10 μg of liothyronine in another. At the end of the first six week period, subjects were crossed over. T tests were used to assess carry-over and treatment effects. ^ Results. Twenty-seven subjects completed the trial. The majority of completers had an autoimmune etiology. Mean baseline levothyroxine dose was 121 μg/d (±26.0). Subjects reported small increases in fatigue as measured by the Piper Fatigue Scale (0.9, p = 0.09) and in symptoms of depression measured by the Beck Depression Inventory-II (2.3, p = 0.16) as well as the General Health Questionnaire-30 (4.7, p = 0.14) while treated with substitution treatment. However, none of these differences was statistically significant. Measures of working memory were essentially unchanged between treatments. Thyroid stimulating hormone was about twice as high during substitution treatment (p = 0.16). Free thyroxine index was reduced by 0.7 (p < 0.001), and total serum thyroxine was reduced by 3.0 (p < 0.001) while serum triiodothyronine was increased by 20.5 (p < 0.001) on substitution treatment. ^ Conclusions. Substituting an equivalent amount of liothyronine for a portion of levothyroxine in patients with hypothyroidism does not decrease fatigue, symptoms of depression, or improve working memory. However, due to changes in serum hormone levels and small increments in fatigue and depression symptoms on substitution treatment, a question was raised about the role of T3 in the serum. ^