3 resultados para ddc:670

em DigitalCommons@The Texas Medical Center


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In 2011, there will be an estimated 1,596,670 new cancer cases and 571,950 cancer-related deaths in the US. With the ever-increasing applications of cancer genetics in epidemiology, there is great potential to identify genetic risk factors that would help identify individuals with increased genetic susceptibility to cancer, which could be used to develop interventions or targeted therapies that could hopefully reduce cancer risk and mortality. In this dissertation, I propose to develop a new statistical method to evaluate the role of haplotypes in cancer susceptibility and development. This model will be flexible enough to handle not only haplotypes of any size, but also a variety of covariates. I will then apply this method to three cancer-related data sets (Hodgkin Disease, Glioma, and Lung Cancer). I hypothesize that there is substantial improvement in the estimation of association between haplotypes and disease, with the use of a Bayesian mathematical method to infer haplotypes that uses prior information from known genetics sources. Analysis based on haplotypes using information from publically available genetic sources generally show increased odds ratios and smaller p-values in both the Hodgkin, Glioma, and Lung data sets. For instance, the Bayesian Joint Logistic Model (BJLM) inferred haplotype TC had a substantially higher estimated effect size (OR=12.16, 95% CI = 2.47-90.1 vs. 9.24, 95% CI = 1.81-47.2) and more significant p-value (0.00044 vs. 0.008) for Hodgkin Disease compared to a traditional logistic regression approach. Also, the effect sizes of haplotypes modeled with recessive genetic effects were higher (and had more significant p-values) when analyzed with the BJLM. Full genetic models with haplotype information developed with the BJLM resulted in significantly higher discriminatory power and a significantly higher Net Reclassification Index compared to those developed with haplo.stats for lung cancer. Future analysis for this work could be to incorporate the 1000 Genomes project, which offers a larger selection of SNPs can be incorporated into the information from known genetic sources as well. Other future analysis include testing non-binary outcomes, like the levels of biomarkers that are present in lung cancer (NNK), and extending this analysis to full GWAS studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background. In Dr. Mel Greaves "delayed-infection hypothesis," postponed exposure to common infections increases the likelihood of childhood cancer. Hygienic advancements in developed countries have reduced children's exposure to pathogens and children encounter common infectious agents at an older age with an immune system unable to deal with the foreign antigens. Vaccinations may be considered to be simulated infections as they prompt an antigenic response by the immune system. Vaccinations may regulate the risk of childhood cancer by modulating the immune system. The aim of the study was to determine if children born in Texas counties with higher levels of vaccination coverage were at a reduced risk for childhood cancer.^ Methods. We conducted a case-control study to examine the risk of childhood cancers, specifically leukemia, brain tumors, and non-Hodgkin lymphoma, in relation to vaccination rates in Texas counties. We utilized a multilevel mixed-effects regression model of the individual data from the Texas Cancer Registry (TCR) with group-level exposure data (i.e., the county- and public health region-level vaccination rates).^ Results. Utilizing county-level vaccination rates and controlling for child's sex, birth year, ethnicity, birth weight, and mother's age at child's birth the hepatitis B vaccine revealed negative associations with developing all cancer types (OR = 0.81, 95% CI: 0.67–0.98) and acute lymphoblastic leukemia (ALL) (OR = 0.63, 95% CI: 0.46–0.88). The decreased risk for ALL was also evident for the inactivated polio vaccine (IPV) (OR = 0.67, 95% CI: 0.49–0.92) and 4-3-1-3-3 vaccination series (OR = 0.62, 95% CI: 0.44-0.87). Using public health region vaccine coverage levels, an inverse association between the Haemophilus influenzae type b (Hib) vaccine and ALL (OR: 0.58; 95% CI: 0.42–0.82) was present. Conversely, the measles, mumps, and rubella (MMR) vaccine resulted in a positive association with developing non-Hodgkin lymphoma (OR = 2.81, 95% CI: 1.27–6.22). ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years, disaster preparedness through assessment of medical and special needs persons (MSNP) has taken a center place in public eye in effect of frequent natural disasters such as hurricanes, storm surge or tsunami due to climate change and increased human activity on our planet. Statistical methods complex survey design and analysis have equally gained significance as a consequence. However, there exist many challenges still, to infer such assessments over the target population for policy level advocacy and implementation. ^ Objective. This study discusses the use of some of the statistical methods for disaster preparedness and medical needs assessment to facilitate local and state governments for its policy level decision making and logistic support to avoid any loss of life and property in future calamities. ^ Methods. In order to obtain precise and unbiased estimates for Medical Special Needs Persons (MSNP) and disaster preparedness for evacuation in Rio Grande Valley (RGV) of Texas, a stratified and cluster-randomized multi-stage sampling design was implemented. US School of Public Health, Brownsville surveyed 3088 households in three counties namely Cameron, Hidalgo, and Willacy. Multiple statistical methods were implemented and estimates were obtained taking into count probability of selection and clustering effects. Statistical methods for data analysis discussed were Multivariate Linear Regression (MLR), Survey Linear Regression (Svy-Reg), Generalized Estimation Equation (GEE) and Multilevel Mixed Models (MLM) all with and without sampling weights. ^ Results. Estimated population for RGV was 1,146,796. There were 51.5% female, 90% Hispanic, 73% married, 56% unemployed and 37% with their personal transport. 40% people attained education up to elementary school, another 42% reaching high school and only 18% went to college. Median household income is less than $15,000/year. MSNP estimated to be 44,196 (3.98%) [95% CI: 39,029; 51,123]. All statistical models are in concordance with MSNP estimates ranging from 44,000 to 48,000. MSNP estimates for statistical methods are: MLR (47,707; 95% CI: 42,462; 52,999), MLR with weights (45,882; 95% CI: 39,792; 51,972), Bootstrap Regression (47,730; 95% CI: 41,629; 53,785), GEE (47,649; 95% CI: 41,629; 53,670), GEE with weights (45,076; 95% CI: 39,029; 51,123), Svy-Reg (44,196; 95% CI: 40,004; 48,390) and MLM (46,513; 95% CI: 39,869; 53,157). ^ Conclusion. RGV is a flood zone, most susceptible to hurricanes and other natural disasters. People in the region are mostly Hispanic, under-educated with least income levels in the U.S. In case of any disaster people in large are incapacitated with only 37% have their personal transport to take care of MSNP. Local and state government’s intervention in terms of planning, preparation and support for evacuation is necessary in any such disaster to avoid loss of precious human life. ^ Key words: Complex Surveys, statistical methods, multilevel models, cluster randomized, sampling weights, raking, survey regression, generalized estimation equations (GEE), random effects, Intracluster correlation coefficient (ICC).^