8 resultados para data validation
em DigitalCommons@The Texas Medical Center
Resumo:
Chondrocyte gene regulation is important for the generation and maintenance of cartilage tissues. Several regulatory factors have been identified that play a role in chondrogenesis, including the positive transacting factors of the SOX family such as SOX9, SOX5, and SOX6, as well as negative transacting factors such as C/EBP and delta EF1. However, a complete understanding of the intricate regulatory network that governs the tissue-specific expression of cartilage genes is not yet available. We have taken a computational approach to identify cis-regulatory, transcription factor (TF) binding motifs in a set of cartilage characteristic genes to better define the transcriptional regulatory networks that regulate chondrogenesis. Our computational methods have identified several TFs, whose binding profiles are available in the TRANSFAC database, as important to chondrogenesis. In addition, a cartilage-specific SOX-binding profile was constructed and used to identify both known, and novel, functional paired SOX-binding motifs in chondrocyte genes. Using DNA pattern-recognition algorithms, we have also identified cis-regulatory elements for unknown TFs. We have validated our computational predictions through mutational analyses in cell transfection experiments. One novel regulatory motif, N1, found at high frequency in the COL2A1 promoter, was found to bind to chondrocyte nuclear proteins. Mutational analyses suggest that this motif binds a repressive factor that regulates basal levels of the COL2A1 promoter.
Resumo:
Symptoms has been shown to predict quality of life, treatment course and survival in solid tumor patients. Currently, no instrument exists that measures both cancer-related symptoms and the neurologic symptoms that are unique to persons with primary brain tumors (PBT). The aim of this study was to develop and validate an instrument to measure symptoms in patients who have PBT. A conceptual analysis of symptoms and symptom theories led to defining the symptoms experience as the perception of the frequency, intensity, distress, and meaning that occurs as symptoms are produced, perceived, and expressed. The M.D. Anderson Symptom Inventory (MDASI) measures both symptoms and how they interfere with daily functioning in patients with cancer, which is similar to the situational meaning defined in the analysis. A list of symptoms pertinent to the PBT population was added to the core MDASI and reviewed by a group of experts for validity. As a result, 18 items were added to the core MDASI (the MDASI-BT) for the next phase of instrument development, establishing validity and reliability through a descriptive, cross-sectional approach with PBT patients. Data were collected with a patient completed demographic data sheet, an investigator completed clinician checklist, and the MDASI-BT. Analysis evaluated the reliability and validity of the MDASI-BT in PBT patients. Data were obtained from 201 patients. The number of items was reduced to 22 by evaluation of symptom severity as well as cluster analysis. Regression analysis showed more than half (56%) of the variability in symptom severity was explained by the brain tumor module items. Factor analysis confirmed that the 22 item MDASI-BT measured six underlying constructs: (a) affective; (b) cognitive; (c) focal neurologic deficits; (d) constitutional symptoms; (e) treatment-related symptoms; and (f) gastrointestinal symptoms. The MDASI-BT was sensitive to disease severity and if the patient was hospitalized. The MDASI-BT is the first instrument to measure symptoms in PBT patients that has demonstrated reliability and validity. It is the first step in a program of research to evaluate the occurrence of symptoms and plan and evaluate interventions for PBT patients. ^
Resumo:
Background/significance. The scarcity of reliable and valid Spanish language instruments for health related research has hindered research with the Hispanic population. Research suggests that fatalistic attitudes are related to poor cancer screening behaviors and may be one reason for low participation of Mexican-Americans in cancer screening. This problem is of major concern because Mexican-Americans constitute the largest Hispanic subgroup in the U.S.^ Purpose. The purposes of this study were: (1) To translate the Powe Fatalism Inventory, (PFI) into Spanish, and culturally adapt the instrument to the Mexican-American culture as found along the U.S.-Mexico border and (2) To test the equivalence between the Spanish translated, culturally adapted version of the PFI and the English version of the PFI to include clarity, content validity, reading level and reliability.^ Design. Descriptive, cross-sectional.^ Methods. The Spanish language translation used a translation model which incorporates a cultural adaptation process. The SPFI was administered to 175 bilingual participants residing in a midsize, U.S-Mexico border city. Data analysis included estimation of Cronbach's alpha, factor analysis, paired samples t-test comparison and multiple regression analysis using SPSS software, as well as measurement of content validity and reading level of the SPFI. ^ Findings. A reliability estimate using Cronbach's alpha coefficient was 0.81 for the SPFI compared to 0.80 for the PFI in this study. Factor Analysis extracted four factors which explained 59% of the variance. Paired t-test comparison revealed no statistically significant differences between the SPFI and PFI total or individual item scores. Content Validity Index was determined to be 1.0. Reading Level was assessed to be less than a 6th grade reading level. The correlation coefficient between the SPFI and PFI was 0.95.^ Conclusions. This study provided strong psychometric evidence that the Spanish translated, culturally adapted SPFI is an equivalent tool to the English version of the PFI in measuring cancer fatalism. This indicates that the two forms of the instrument can be used interchangeably in a single study to accommodate reading and speaking abilities of respondents. ^
Resumo:
This study aimed to develop and validate The Cancer Family Impact Scale (CFIS), an instrument for use in studies investigating relationships among family factors and colorectal cancer (CRC) screening when family history is a risk factor. We used existing data to develop the measure from 1,285 participants (637 families) across the United States who were in the Johns Hopkins Colon Cancer Genetic Testing study. Participants were 94% white with an average age of 50.1 years, and 60% were women. None had a personal CRC history, and eighty percent had 1 FDR with CRC and 20% had more than one FDR with CRC. The study had three aims: (1) to identify the latent factors underlying the CFIS via exploratory factor analysis (EFA); (2) to confirm the findings of the EFA via confirmatory factor analysis (CFA); and (3) to assess the reliability of the scale via Cronbach's alpha. Exploratory analyses were performed on a split half of the sample, and the final model was confirmed on the other half. The EFA suggested the CFIS was an 18-item measure with 5 latent constructs: (1) NEGATIVE: negative effects of cancer on the family; (2) POSITIVE: positive effects of cancer on the family; (3) COMMUNICATE: how families communicate about cancer; (4) FLOW: how information about cancer is conveyed in families; and (5) NORM: how individuals react to family norms about cancer. CFA on the holdout sample showed the CFIS to have a reasonably good fit (Chi-square = 389.977, df = 122, RMSEA= 0.058 (.052-.065), CFI=.902, TLI=.877, GF1=.939). The overall reliability of the scale was α=0.65. The reliability of the subscales was: (1) NEGATIVE α = 0.682; (2) POSITIVE α = 0.686; (3) COMMUNICATE α = 0.723; (4) FLOW α = 0.467; and (5) NORM α = 0.732. ^ We concluded the CFIS to be a good measure with most fit levels over 0.90. The CFIS could be used to compare theoretically driven hypotheses about the pathways through which family factors could influence health behavior among unaffected individuals at risk due to family history, and also aid in the development and evaluation of cancer prevention interventions including a family component. ^
Resumo:
Strategies are compared for the development of a linear regression model with stochastic (multivariate normal) regressor variables and the subsequent assessment of its predictive ability. Bias and mean squared error of four estimators of predictive performance are evaluated in simulated samples of 32 population correlation matrices. Models including all of the available predictors are compared with those obtained using selected subsets. The subset selection procedures investigated include two stopping rules, C$\sb{\rm p}$ and S$\sb{\rm p}$, each combined with an 'all possible subsets' or 'forward selection' of variables. The estimators of performance utilized include parametric (MSEP$\sb{\rm m}$) and non-parametric (PRESS) assessments in the entire sample, and two data splitting estimates restricted to a random or balanced (Snee's DUPLEX) 'validation' half sample. The simulations were performed as a designed experiment, with population correlation matrices representing a broad range of data structures.^ The techniques examined for subset selection do not generally result in improved predictions relative to the full model. Approaches using 'forward selection' result in slightly smaller prediction errors and less biased estimators of predictive accuracy than 'all possible subsets' approaches but no differences are detected between the performances of C$\sb{\rm p}$ and S$\sb{\rm p}$. In every case, prediction errors of models obtained by subset selection in either of the half splits exceed those obtained using all predictors and the entire sample.^ Only the random split estimator is conditionally (on $\\beta$) unbiased, however MSEP$\sb{\rm m}$ is unbiased on average and PRESS is nearly so in unselected (fixed form) models. When subset selection techniques are used, MSEP$\sb{\rm m}$ and PRESS always underestimate prediction errors, by as much as 27 percent (on average) in small samples. Despite their bias, the mean squared errors (MSE) of these estimators are at least 30 percent less than that of the unbiased random split estimator. The DUPLEX split estimator suffers from large MSE as well as bias, and seems of little value within the context of stochastic regressor variables.^ To maximize predictive accuracy while retaining a reliable estimate of that accuracy, it is recommended that the entire sample be used for model development, and a leave-one-out statistic (e.g. PRESS) be used for assessment. ^
Resumo:
Genome-wide association studies (GWAS) have successfully identified several genetic loci associated with inherited predisposition to primary biliary cirrhosis (PBC), the most common autoimmune disease of the liver. Pathway-based tests constitute a novel paradigm for GWAS analysis. By evaluating genetic variation across a biological pathway (gene set), these tests have the potential to determine the collective impact of variants with subtle effects that are individually too weak to be detected in traditional single variant GWAS analysis. To identify biological pathways associated with the risk of development of PBC, GWAS of PBC from Italy (449 cases and 940 controls) and Canada (530 cases and 398 controls) were independently analyzed. The linear combination test (LCT), a recently developed pathway-level statistical method was used for this analysis. For additional validation, pathways that were replicated at the P <0.05 level of significance in both GWAS on LCT analysis were also tested for association with PBC in each dataset using two complementary GWAS pathway approaches. The complementary approaches included a modification of the gene set enrichment analysis algorithm (i-GSEA4GWAS) and Fisher's exact test for pathway enrichment ratios. Twenty-five pathways were associated with PBC risk on LCT analysis in the Italian dataset at P<0.05, of which eight had an FDR<0.25. The top pathway in the Italian dataset was the TNF/stress related signaling pathway (p=7.38×10 -4, FDR=0.18). Twenty-six pathways were associated with PBC at the P<0.05 level using the LCT in the Canadian dataset with the regulation and function of ChREBP in liver pathway (p=5.68×10-4, FDR=0.285) emerging as the most significant pathway. Two pathways, phosphatidylinositol signaling system (Italian: p=0.016, FDR=0.436; Canadian: p=0.034, FDR=0.693) and hedgehog signaling (Italian: p=0.044, FDR=0.636; Canadian: p=0.041, FDR=0.693), were replicated at LCT P<0.05 in both datasets. Statistically significant association of both pathways with PBC genetic susceptibility was confirmed in the Italian dataset on i-GSEA4GWAS. Results for the phosphatidylinositol signaling system were also significant in both datasets on applying Fisher's exact test for pathway enrichment ratios. This study identified a combination of known and novel pathway-level associations with PBC risk. If functionally validated, the findings may yield fresh insights into the etiology of this complex autoimmune disease with possible preventive and therapeutic application.^
Resumo:
The overarching goal of the Pathway Semantics Algorithm (PSA) is to improve the in silico identification of clinically useful hypotheses about molecular patterns in disease progression. By framing biomedical questions within a variety of matrix representations, PSA has the flexibility to analyze combined quantitative and qualitative data over a wide range of stratifications. The resulting hypothetical answers can then move to in vitro and in vivo verification, research assay optimization, clinical validation, and commercialization. Herein PSA is shown to generate novel hypotheses about the significant biological pathways in two disease domains: shock / trauma and hemophilia A, and validated experimentally in the latter. The PSA matrix algebra approach identified differential molecular patterns in biological networks over time and outcome that would not be easily found through direct assays, literature or database searches. In this dissertation, Chapter 1 provides a broad overview of the background and motivation for the study, followed by Chapter 2 with a literature review of relevant computational methods. Chapters 3 and 4 describe PSA for node and edge analysis respectively, and apply the method to disease progression in shock / trauma. Chapter 5 demonstrates the application of PSA to hemophilia A and the validation with experimental results. The work is summarized in Chapter 6, followed by extensive references and an Appendix with additional material.
Resumo:
The main objective of this study was to determine the external validity of a clinical prediction rule developed by the European Multicenter Study on Human Spinal Cord Injury (EM-SCI) to predict the ambulation outcomes 12 months after traumatic spinal cord injury. Data from the North American Clinical Trials Network (NACTN) data registry with approximately 500 SCI cases were used for this validity study. The predictive accuracy of the EM-SCI prognostic model was evaluated using calibration and discrimination based on 231 NACTN cases. The area under the receiver-operating-characteristics curve (ROC) curve was 0.927 (95% CI 0.894 – 0.959) for the EM-SCI model when applied to NACTN population. This is lower than the AUC of 0.956 (95% CI 0.936 – 0.976) reported for the EM-SCI population, but suggests that the EM-SCI clinical prediction rule distinguished well between those patients in the NACTN population who were able to achieve independent ambulation and those who did not achieve independent ambulation. The calibration curve suggests that higher the prediction score is, the better the probability of walking with the best prediction for AIS D patients. In conclusion, the EM-SCI clinical prediction rule was determined to be generalizable to the adult NACTN SCI population.^