5 resultados para culture media

em DigitalCommons@The Texas Medical Center


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Maximal amounts of prodigiosin were synthesized in either minimal or complete medium after incubation of cultures at 27 C for 7 days. Biosynthesis of prodigiosin began earlier and the range of temperature for formation was greater in complete medium. No prodigiosin was formed in either medium when cultures were incubated at 38 C; however, after a shift to 27 C, pigmentation ensued, provided the period of incubation at 38 C was not longer than 36 hr for minimal medium or 48 hr for complete medium. Washed, nonpigmented cells grown in either medium at 38 C for 72 hr could synthesize prodigiosin when suspended in saline at 27 C when casein hydrolysate was added. These suspensions produced less prodigiosin at a slower rate than did cultures growing in casein hydrolysate at 27 C without prior incubation at 38 C. Optimal concentration of casein hydrolysate for pigment formation by suspensions was 0.4%; optimal temperature was 27 C. Anaerobic incubation, shift back to 38 C, killing cells by heating, or chloramphenicol (25 mug/ml) inhibited pigmentation. Suspensions of washed cells forming pigment reached pH 8.0 to 8.3 rapidly and maintained this pH throughout incubation for 7 days. Measurements of viable count and of protein, plus other data, indicated that cellular multiplication did not occur in suspensions of washed cells during pigment formation. By this procedure utilizing a shift down in temperature, biosynthesis of prodigiosin by washed cells could be separated from multiplication of bacteria.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The skin is composed of two major compartments, the dermis and epidermis. The epidermis forms a barrier to protect the body. The stratified epithelium has self-renewing capacity throughout life, and continuous turnover is mediated by stem cells in the basal layer. p63 is structurally and functionally related to p53. In spite of their structural similarities, p63 is critical for the development and maintenance of stratified epithelial tissues, unlike p53. p63 is highly expressed in the epidermis and previously has been shown to play a critical role in the development and maintenance of the epidermis. The study of p63 has been complicated due to the existence of multiple isoforms: those with a transactivation domain (TAp63) and those lacking this domain (ΔNp63). Mice lacking p63 cannot form skin, have craniofacial and skeletal defects and die within hours after birth. These defects are due to the ability of p63 to regulate multiple processes in skin development including epithelial stem cell proliferation, differentiation, and adherence programs. To determine the roles of these isoforms in skin development and maintenance, isoform specific p63 conditional knock out mice were generated by our lab. TAp63-/- mice age prematurely, develop blisters, and display wound-healing defects that result from hyperproliferation of dermal stem cells. That results in premature depletion of these cells, which are necessary for wound repair, that indicates TAp63 plays a role in dermal/epidermal maintenance. To study the role of ΔNp63, I generated a ΔNp63-/- mouse and analyzed the skin by performing immunofluorescence for markers of epithelial differentiation. The ΔNp63-/- mice developed a thin, disorganized epithelium but differentiation markers were expressed. Interestingly, the epidermis from ΔNp63-/- mice co-expressed K14 and K10 in the same cell suggesting defects in epidermal differentiation and stratification. This phenotype is reminiscent of the DGCR8fl/fl;K14Cre and Dicerfl/fl;K14Cre mice skin. Importantly, DGCR8-/- embryonic stem cells (ESCs) display a hyperproliferation defect by failure to silence pluripotency genes. Furthermore, I have observed that epidermal cells lacking ΔNp63 display a phenotype reminiscent of embryonic stem cells instead of keratinocytes. Thus, I hypothesize that genes involved in maintaining pluripotency, like Oct4, may be upregulated in the absence of ΔNp63. To test this, q-RT PCR was performed for Oct4 mRNA with wild type and ΔNp63-/- 18.5dpc embryo skin. I found that the level of Oct4 was dramatically increased in the absence of ΔNp63-/-. Based on these results, I hypothesized that ΔNp63 induces differentiation by silencing pluripotency regulators, Oct4, Sox2 and Nanog directly through the regulation of DGCR8. I found that DGCR8 restoration resulted in repression of Oct4, Sox2 and Nanog in ΔNp63-/- epidermal cells and rescue differentiation defects. Loss of ΔNp63 resulted in pluripotency that caused defect in proper differentiation and stem cell like phenotype. This led me to culture the ΔNp63-/- epidermal cells in neuronal cell culture media in order to address whether restoration of DGCR8 can transform epidermal cells to neuronal cells. I found that DGCR8 restoration resulted in a change in cell fate. I also found that miR470 and miR145 play a role in the induction of pluripotency by repressing Oct4, Sox2 and Nanog. This indicates that ΔNp63 induces terminal differentiation through the regulation of DGCR8.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mesenchymal stromal cell (MSC) therapy has shown promise for the treatment of traumatic brain injury (TBI). Although the mechanism(s) by which MSCs offer protection is unclear, initial in vivo work has suggested that modulation of the locoregional inflammatory response could explain the observed benefit. We hypothesize that the direct implantation of MSCs into the injured brain activates resident neuronal stem cell (NSC) niches altering the intracerebral milieu. To test our hypothesis, we conducted initial in vivo studies, followed by a sequence of in vitro studies. In vivo: Sprague-Dawley rats received a controlled cortical impact (CCI) injury with implantation of 1 million MSCs 6 h after injury. Brain tissue supernatant was harvested for analysis of the proinflammatory cytokine profile. In vitro: NSCs were transfected with a firefly luciferase reporter for NFkappaB and placed in contact culture and transwell culture. Additionally, multiplex, quantitative PCR, caspase 3, and EDU assays were completed to evaluate NSC cytokine production, apoptosis, and proliferation, respectively. In vivo: Brain supernatant analysis showed an increase in the proinflammatory cytokines IL-1alpha, IL-1beta, and IL-6. In vitro: NSC NFkappaB activity increased only when in contact culture with MSCs. When in contact with MSCs, NSCs show an increase in IL-6 production as well as a decrease in apoptosis. Direct implantation of MSCs enhances neuroprotection via activation of resident NSC NFkappaB activity (independent of PI3 kinase/AKT pathway) leading to an increase in IL-6 production and decrease in apoptosis. In addition, the observed NFkappaB activity depends on direct cell contact.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Enterococcus faecalis, the third most frequent cause of bacterial endocarditis, appears to be equipped with diverse surface-associated proteins showing structural-fold similarity to the immunoglobulin-fold family of staphylococcal adhesins. Among the putative E. faecalis surface proteins, the previously characterized adhesin Ace, which shows specific binding to collagen and laminin, was detectable in surface protein preparations only after growth at 46 degrees C, mirroring the finding that adherence was observed in 46 degrees C, but not 37 degrees C, grown E. faecalis cultures. To elucidate the influence of different growth and host parameters on ace expression, we investigated ace expression using E. faecalis OG1RF grown in routine laboratory media (brain heart infusion) and found that ace mRNA levels were low in all growth phases. However, quantitative reverse transcription-PCR showed 18-fold-higher ace mRNA amounts in cells grown in the presence of collagen type IV compared to the controls. Similarly, a marked increase was observed when cells were either grown in the presence of collagen type I or serum but not in the presence of fibrinogen or bovine serum albumin. The production of Ace after growth in the presence of collagen type IV was demonstrated by immunofluorescence microscopy, mirroring the increased ace mRNA levels. Furthermore, increased Ace expression correlated with increased collagen and laminin adhesion. Collagen-induced Ace expression was also seen in three of three other E. faecalis strains of diverse origins tested, and thus it appears to be a common phenomenon. The observation of host matrix signal-induced adherence of E. faecalis may have important implications on our understanding of this opportunistic pathogen.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rhodobacter sphaeroides 2.4.1 is a Gram negative facultative photoheterotrophic bacterium that has been shown to have an N-acyl homoserine lactone-based quorum sensing system called cer for c&barbelow;ommunity e&barbelow;scape r&barbelow;esponse. The cer ORFs are cerR, the transcriptional regulator, cerI, the autoinducer synthase and cerA , whose function is unknown. The autoinducer molecule, 7,8- cis-N-(tetradecenoyl) homoserine lactone, has been characterized. The objective of this study was to identify an environmental stimulus that influences the regulation of cerRAI and, to characterize transcription of the cer operon. ^ A cerR::lacZ transcriptional fusion was made and β-Galactosidase assays were performed in R. sphaeroides 2.4.1 strains, wild type, AP3 (CerI−) and AP4 (CerR−). The cerR::lacZ β-Galactosidase assays were used as an initial survey of the mode of regulation of the Cer system. A cerA::lacZ translational fusion was created and was used to show that cerA can be translated. The presence of 7,8-cis-N-(tetradecenoyl) homoserine lactone was detected from R. sphaeroides strains wild type and AP4 (CerR−) using a lasR::lacZ translational fusion autoinducer bioassay. The cerR::lacZ transcriptional fusion in R. sphaeroides 2.4.1 wild type was tested under different environmental stimuli, such as various carbon sources, oxygen tensions, light intensities and culture media to determine if they influence transcription of the cer ORFs. Although lacZ assay data implicated high light intensity at 100 W/m2 to stimulate cer transcription, quantitative Northern RNA data of the cerR transcript showed that low light intensity at 3 W/m2 is at least one environmental stimulus that induces cer transcription. This finding was supported by DNA microarray analysis. Northern analysis of the cerRAI transcript provided evidence that the cer ORFs are co-transcribed, and that the cer operon contains two additional genes. Bioinformatics was used to identify genes that may be regulated by the Cer system by identifying putative lux box homologue sequences in the presumed promoter region of these genes. Genes that were identified were fliQ, celB and calsymin, all implicated in interacting with plants. Primer extension was used to help localize cis-elements in the promoter region. The cerR::lacZ transcriptional fusion was monitored in a subset of different global DNA binding transcriptional regulator mutant strains of R. sphaeroides 2.4.1. Those regulators involved in maintaining an anaerobic photosynthetic lifestyle appeared to have an effect. Collectively, the data imply that R. sphaeroides 2.4.1 activates the Cer system when grown anaerobic photosynthetically at low light intensity, 3 W/m2, and it may be involved in an interaction with plants. ^