3 resultados para cross-link

em DigitalCommons@The Texas Medical Center


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Systemic toxicity was evaluated in Sprague-Dawley (SD) rats and A-strain mice exposed to HCHO inhalation at 0, 0.5, 3, or 15 ppm for six hours/day, five days/week for up to 24 weeks. Toxicity was measured by flow cytometry to detect changes in cell cycle RNA and DNA content and by alkaline elution to detect DNA protein cross-link (DPC) formation.^ A G(,2)M block was detected in SD rat marrow following one week of exposure to 0.5, 3, or 15 ppm HCHO, but this block did not persist. No effect was noticed in mouse marrow. Only a minimal increase in RNA content was detected in rat or mouse marrow while exfoliated lung cells showed a significant increase in RNA activity after one week of exposure.^ Acute exposure in SD rats for four hours/day for one or three days at 150 ppm showed an increase in RNA activity in exfoliated lung cells but not in the marrow after one day. On the third day, dead cells were detected in exfoliated lung cells.^ In alkaline elution studies, no DPC were detected in marrow of SD rats after 24 weeks exposure up to 15 ppm. During acute exposures, a dose response relationship was detected in SD rat exfoliated lung cells which yielded cross-linking factors of 0.954, 1.237, and 1.417 following a four hour exposure to 15, 50, or 150 ppm, respectively. No DPC were detected in the marrow at 150 ppm. In vitro exposures to HCHO of CHO and SHE cells and rat marrow cells revealed the production of DPC and DNA-DNA cross-links.^ Cytoxan treatment of SD rats was used to provide positive controls for flow cytometry and alkaline elution. A drastic reduction in RNA content and cycling cells occurred one day following treatment. After four days, RNA content was greatly increased; and on day eleven the marrow had regenerated. DPCs were detected in both the marrow and the exfoliated lung cells.^ The lack of significant responses in SD rats and A-strain mice below 15 ppm HCHO is explainable by host defense mechanisms. Apparently, the mucociliary apparatus and enzymatic detoxification are sufficient to reduce systemic toxicity to low level concentrations of formaldehyde. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES: To determine the characteristics of popular breast cancer related websites and whether more popular sites are of higher quality. DESIGN: The search engine Google was used to generate a list of websites about breast cancer. Google ranks search results by measures of link popularity---the number of links to a site from other sites. The top 200 sites returned in response to the query "breast cancer" were divided into "more popular" and "less popular" subgroups by three different measures of link popularity: Google rank and number of links reported independently by Google and by AltaVista (another search engine). MAIN OUTCOME MEASURES: Type and quality of content. RESULTS: More popular sites according to Google rank were more likely than less popular ones to contain information on ongoing clinical trials (27% v 12%, P=0.01 ), results of trials (12% v 3%, P=0.02), and opportunities for psychosocial adjustment (48% v 23%, P<0.01). These characteristics were also associated with higher number of links as reported by Google and AltaVista. More popular sites by number of linking sites were also more likely to provide updates on other breast cancer research, information on legislation and advocacy, and a message board service. Measures of quality such as display of authorship, attribution or references, currency of information, and disclosure did not differ between groups. CONCLUSIONS: Popularity of websites is associated with type rather than quality of content. Sites that include content correlated with popularity may best meet the public's desire for information about breast cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Approximately 33% of clinical breast carcinomas require estrogens to proliferate. Epidemiological data show that insulin resistance and diabetes mellitus is 2–3 times more prevalent in women with breast cancer than those with benign breast lesions, suggesting a clinical link between insulin and estradiol. Insulin and estradiol have a synergistic effect on the growth of MCF7 breast cancer cells, and long-term estradiol treatment upregulates the expression of the key insulin signaling protein IRS-1. The goal of this study was to further define the mechanism(s) of cross-talk between insulin and estradiol in regulating the growth of breast cancer. Using MCF7 cells, acute treatment with insulin or estradiol alone was found to stimulate two activities associated with growth: Erk MAP kinase and PI 3-kinase. However, combined acute treatment had an antagonistic effect on both activities. Acute estradiol treatment inhibited the insulin-stimulated tyrosine phosphorylation of IRS-1 while increasing its serine phosphorylation; the serine phosphorylation was attenuated by the PI 3-kinase inhibitor wortmannin. The acute antagonism observed with combined estradiol and insulin are not consistent with the long-term synergistic effect on growth. In contrast, chronic estradiol treatment enhanced the insulin-sensitivity of breast cancer cells as measured by increases in total cellular insulin-stimulated tyrosine phosphorylation of IRS-1 and activation of PI 3-kinase. Estradiol stimulation of gene transcription was found to require PI 3-kinase activity but not MAP kinase activity. Insulin alone had no effect on ER transcriptional activity, but chronic treatment in combination with estradiol resulted in synergism of ER transcription. The synergistic effect of insulin and estradiol on MCF7 cell growth was also found to require PI 3-kinase but not MAP kinase activity. Therefore, chronic estradiol treatment increases insulin stimulation of PI 3-kinase, and PI 3-kinase is required for estradiol stimulation of gene transcription alone and in combined synergy with insulin. These data demonstrate that PI 3-kinase is the locus for the cross-talk between insulin and estradiol which results in enhanced breast cancer growth with long-term exposure to both hormones. This may have important clinical implications for women with high risk for breast cancer and/or diabetes mellitus. ^