3 resultados para cross show diarization

em DigitalCommons@The Texas Medical Center


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The central event in protein misfolding disorders (PMDs) is the accumulation of a misfolded form of a naturally expressed protein. Despite the diversity of clinical symptoms associated with different PMDs, many similarities in their mechanism suggest that distinct pathologies may cross talk at the molecular level. The main goal of this study was to analyze the interaction of the protein misfolding processes implicated in Alzheimer's and prion diseases. For this purpose, we inoculated prions in an Alzheimer's transgenic mouse model that develop typical amyloid plaques and followed the progression of pathological changes over time. Our findings show a dramatic acceleration and exacerbation of both pathologies. The onset of prion disease symptoms in transgenic mice appeared significantly faster with a concomitant increase on the level of misfolded prion protein in the brain. A striking increase in amyloid plaque deposition was observed in prion-infected mice compared with their noninoculated counterparts. Histological and biochemical studies showed the association of the two misfolded proteins in the brain and in vitro experiments showed that protein misfolding can be enhanced by a cross-seeding mechanism. These results suggest a profound interaction between Alzheimer's and prion pathologies, indicating that one protein misfolding process may be an important risk factor for the development of a second one. Our findings may have important implications to understand the origin and progression of PMDs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Approximately 33% of clinical breast carcinomas require estrogens to proliferate. Epidemiological data show that insulin resistance and diabetes mellitus is 2–3 times more prevalent in women with breast cancer than those with benign breast lesions, suggesting a clinical link between insulin and estradiol. Insulin and estradiol have a synergistic effect on the growth of MCF7 breast cancer cells, and long-term estradiol treatment upregulates the expression of the key insulin signaling protein IRS-1. The goal of this study was to further define the mechanism(s) of cross-talk between insulin and estradiol in regulating the growth of breast cancer. Using MCF7 cells, acute treatment with insulin or estradiol alone was found to stimulate two activities associated with growth: Erk MAP kinase and PI 3-kinase. However, combined acute treatment had an antagonistic effect on both activities. Acute estradiol treatment inhibited the insulin-stimulated tyrosine phosphorylation of IRS-1 while increasing its serine phosphorylation; the serine phosphorylation was attenuated by the PI 3-kinase inhibitor wortmannin. The acute antagonism observed with combined estradiol and insulin are not consistent with the long-term synergistic effect on growth. In contrast, chronic estradiol treatment enhanced the insulin-sensitivity of breast cancer cells as measured by increases in total cellular insulin-stimulated tyrosine phosphorylation of IRS-1 and activation of PI 3-kinase. Estradiol stimulation of gene transcription was found to require PI 3-kinase activity but not MAP kinase activity. Insulin alone had no effect on ER transcriptional activity, but chronic treatment in combination with estradiol resulted in synergism of ER transcription. The synergistic effect of insulin and estradiol on MCF7 cell growth was also found to require PI 3-kinase but not MAP kinase activity. Therefore, chronic estradiol treatment increases insulin stimulation of PI 3-kinase, and PI 3-kinase is required for estradiol stimulation of gene transcription alone and in combined synergy with insulin. These data demonstrate that PI 3-kinase is the locus for the cross-talk between insulin and estradiol which results in enhanced breast cancer growth with long-term exposure to both hormones. This may have important clinical implications for women with high risk for breast cancer and/or diabetes mellitus. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Feline immunodeficiency virus (FIV)-based gene transfer systems are being seriously considered for human gene therapy as an alternative to vectors based on primate lentiviruses, a genetically complex group of retroviruses capable of infecting non-dividing cells. The greater phylogenetic distance between the feline and primate lentiviruses is thought to reduce chances of the generation of recombinant viruses. However, safety of FIV-based vector systems has not been tested experimentally. Since primate lentiviruses such as human and simian immunodeficiency viruses (HIV/SIV) can cross-package each other's genomes, we tested this trait with respect to FIV. Unexpectedly, both feline and primate lentiviruses were reciprocally able to both cross-package and propagate each other's RNA genomes. This was largely due to the recognition of viral packaging signals by the heterologous proteins. However, a simple retrovirus such as Mason-Pfizer monkey virus (MPMV) was unable to package FIV RNA. Interestingly, FIV could package MPMV RNA, but not propagate it for further steps of replication. These findings suggest that upon co-infection of the same host, cross-packaging may allow distinct retroviruses to generate chimeric variants with unknown pathogenic potential. ^ In order to understand the packaging determinants in FIV, we conducted a detailed mutational analysis of the region thought to contain FIV packaging signal. We show that the first 90–120 nt of the 5′ untranslated region (UTR) and the first 90 nt of gag were simultaneously required for efficient FIV RNA packaging. These results suggest that the primary FIV packaging signal is multipartite and discontinuous, composed of two core elements separated by 150 nt of the 5 ′UTR. ^ The above studies are being used towards the development of safer FIV-based self-inactivating (SIN) vectors. These vectors are being designed to eliminate the ability of FIV transfer vector RNAs to be mobilized by primate lentiviral proteins that may be present in the target cells. Preliminary test of the first generation of these vectors has revealed that they are incapable of being propagated by feline proteins. The inability of FIV transfer vectors to express packageable vector RNA after integration should greatly increase the safety of FIV vectors for human gene therapy. ^