4 resultados para commodification of culture

em DigitalCommons@The Texas Medical Center


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Repression of many tumor suppressor genes (TSGs) in cancer is mediated by aberrantly increased DNA methylation levels at promoter CpG islands (CGI). About one-fourth of empirically defined human promoters are surrounded by or contain clustered repetitive elements. It was previously observed that a sharp transition of methylation occurs between highly methylated repetitive elements (SINE or LINE) and unmethylated CGI-promoters (e.g. P16, VHL, CDH and RIL) in normal tissues. The functions that lead to increased CGI methylation in cancer remain poorly understood. We propose that CGI-promoters contain cis-elements for triggering de novo DNA methylation. In the first part of our project, we established a site-specific integration system with enforced local transcriptional repression in colorectal cancer cells and monitored the occurrence of de novo DNA methylation in exogenous fragments containing a CGI-promoter and repetitive elements. Initial de novo methylation was seeded at specific CG sites in a repetitive element, and accelerated by persistent binding of a KRAB-containing transcriptional repressor. Furthermore, additional repetitive elements (LINE and SINE) located adjacent to the promoter could confer DNA methylation spreading into the CGI particularly in the setting of KRAB-factor binding. However, a repressive chromatin alone was not sufficient to initiate DNA methylation, which required specific DNA sequences and was integration-site (and/or cell-line) specific. In addition, all the methylation observed showed slow and gradual accumulation over several months of culture. Overall, these results demonstrate a requirement for specific DNA sequences to trigger de novo DNA methylation, and repetitive elements as cis-regulatory factors to cooperate with strengthened transcriptional repression in promoting methylation spreading. In the second part, we re-introduced disrupted DNMT3B or DNMT1 into HCT116 DKO cells and mapped the remethylation pattern through a profiling method (DREAM). Moderate remethylation occurred when DNMT3B was re-expressed with a preference toward non-CGI and non-promoter regions. Hence, there exists a set of genomic regions with priority to be targets for DNMT3B in somatic cells.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mammalian Alix (ALG2-interacting protein X&barbelow;) is a conserved adaptor protein that is involved in endosomal trafficking, apoptosis and growth factor receptor turnover. Accumulating evidence also indicates that Alix plays roles in promoting/maintaining spread and aligned fibroblast morphology in monolayer culture. Since cell morphology is determined by the structure and dynamics of an integrin-mediated transmembrane protein network that links extracellular matrix to intracellular cytoskeleton, we hypothesized that Alix plays direct or indirect roles in regulating certain components or steps in this transmembrane protein network. To test this hypothesis, we first examined the subcellular localization of Alix and discovered that, as a predominantly cytoplasmic protein, Alix is also present on the substratum/cell surface and in the conditioned medium of fibroblast cultures. Further, precoating of culture surfaces with recombinant Alix promotes spreading and fibronectin assembly to NIH/3T3 cells, and siRNA-mediated Alix knockdown in W138 cells has the opposite effects. These findings indicate the extracellular functions of Alix in regulating cell spreading and extracellular matrix assembly. In a separate study, we analyzed Alix immunocomplexes from normal fibroblast W138 cells by mass spectrometry and identified actin as a major partner protein of Alix. Follow-up studies demonstrated that Alix preferentially binds filamentous actin (F-actin) in vitro and is required for maintaining normal F-actin content and proper actin cytoskeleton assembly in W138 cells. These findings establish direct and essential roles of Alix in regulating actin cytoskeleton. Finally, we investigated the effects of Alix knockdown on the activation and subcellular localization of FAK and Pyk2, the focal adhesion kinases required for cell spreading/migration by promoting turnover of integrin-mediated cell adhesions. We discovered that Alix knockdown inhibits FAK and Pyk2 localizations to focal adhesions or plasma membrane, in association with characteristics of reduced turnover of focal adhesions. These findings reveal a positive role of Alix in focal adhesion turnover. Based on these results, we conclude that Alix targets both intracellularly and extracellularly components to regulate extracellular matrix remodeling, actin cytoskeleton assembly and focal adhesion turnover. A combination of these three functions of Alix explains its crucial role in regulating spread and aligned fibroblast morphology. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Delays in diagnosis of pulmonary tuberculosis have detrimental effects on the health of the ailing patient as well as the people around him or her. These effects are magnified in highly-travelled parts of the world. Identifying factors predictive of diagnostic delay is challenging, as these vary widely by culture and geography. Predictors of delay for tuberculosis patients living in the Northeastern Mexican city of Matamoros, a binationally-transited area, have yet to be described. Using secondary analysis of a retrospective survey, this study sought to identify predictors of diagnostic delay in a sample of culture-positive tuberculosis patients in Matamoros. Sociodemographic, behavioral, and health-related factors were measured and compared. Using bivariate and step-wise regression analyses at an alpha level of 0.05, the author found the following to be statically significant predictors for this sample (R 2=0.171): prior treatment of diabetes, recurrence of tuberculosis, and having ever used cocaine. A question assessing knowledge of immunocompromised subgroups was also identified as a predictor, although its implications are unclear. Notably, the instrument did not distinguish between patient and health system delay. In summary, more research should be conducted in the Matamoros area in order to fully understand the dynamics of delayed diagnosis and its application to public health practice.^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Human peripheral blood monocytes (HPBM) were isolated by centrifugal elutriation from mononuclear cell enriched fractions after routine plateletapheresis and the relationship between maturation of HPBM to macrophage-like cells and activation for tumoricidal activity determined. HPBM were cultured for various times in RPMI 1640 supplemented with 5% pooled human AB serum and cytotoxicity to $\sp{125}$IUDR labeled A375M, a human melanoma cell line, and TNF-$\alpha$ release determined by cytolysis of actinomycin D treated L929 cells. Freshly isolated HPBM or those exposed to recombinant IFN-$\gamma$(1.0 U/ml) were not cytolytic and did not release TNF-$\alpha$ into culture supernatants. Exposure to bacterial lipopolysaccharide (LPS, 1.0 $\upsilon$g/ml) stimulated cytolytic activity and release of TNF-$\alpha$. Maximal release of TNF-$\alpha$ protein occurred at 8 hrs and returned to baseline by 72 hrs. Expression of TNF-$\alpha$ protein was determined by Western blotting. Neither freshly isolated nor IFN-$\gamma$ treated HPBM expressed TNF protein at any time during in vitro culture. LPS treated HPBM maximally expressed the 17KD TNF-$\alpha$ protein at 8 hrs, and protein was not detected after 36 hrs of in vitro culture. Expression of TNF-$\alpha$ mRNA was determined by Northern blotting. Freshly isolated HPBM express TNF-$\alpha$ mRNA which decays to basal levels by 6 hrs of in vitro culture. IFN-$\gamma$ treatment maintains TNF-$\alpha$ mRNA expression for up to 48 hrs of culture, after which it is undetectable. LPS induces TNF-$\alpha$ mRNA after 30 minutes of exposure with maximal accumulation occurring between 4 to 8 hrs. TNF mRNA was not detected in control HPBM at any time after 6 hrs or IFN-$\gamma$ treated HPBM after 48 hrs of in vitro culture. A pulse of LPS the last 24 hrs of in vitro culture induces the accumulation of TNF-$\alpha$ mRNA in HPBM cultured for 3, 5, and 7 days, with the magnitude of induction decreasing approximately 10 fold between 3 and 7 days. Induction of TNF-$\alpha$ mRNA occurred in the absence of detectable TNF-$\alpha$ protein or supernatant activity. Maturation of HPBM to macrophage-like cells controls competence for activation, magnitude and duration of the activation response. ^