2 resultados para cognitive control

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tourette Syndrome begins in childhood and is characterized by uncontrollable repetitive actions like neck craning or hopping and noises such as sniffing or chirping. Worst in early adolescence, these tics wax and wane in severity and occur in bouts unpredictably, often drawing unwanted attention from bystanders. Making matters worse, over half of children with Tourette Syndrome also suffer from comorbid, or concurrent, disorders such as attention deficit hyperactivity disorder (ADHD) and obsessive-compulsive disorder (OCD). These disorders introduce anxious thoughts, impulsivity, inattention, and mood variability that further disrupt children with Tourette Syndrome from focusing and performing well at school and home. Thus, deficits in the cognitive control functions of response inhibition, response generation, and working memory have long been ascribed to Tourette Syndrome. Yet, without considering the effect of medication, age, and comorbidity, this is a premature attribution. This study used an infrared eye tracking camera and various computer tasks requiring eye movement responses to evaluate response inhibition, response generation, and working memory in Tourette Syndrome. This study, the first to control for medication, age, and comorbidity, enrolled 39 unmedicated children with Tourette Syndrome and 29 typically developing peers aged 10-16 years who completed reflexive and voluntary eye movement tasks and diagnostic rating scales to assess symptom severities of Tourette Syndrome, ADHD, and OCD. Children with Tourette Syndrome and comorbid ADHD and/or OCD, but not children with Tourette Syndrome only, took longer to respond and made more errors and distracted eye movements compared to typically-developing children, displaying cognitive control deficits. However, increasing symptom severities of Tourette Syndrome, ADHD, and OCD correlated with one another. Thus, cognitive control deficits were not specific to Tourette Syndrome patients with comorbid conditions, but rather increase with increasing tic severity, suggesting that a majority of Tourette Syndrome patients, regardless of a clinical diagnosis of ADHD and/or OCD, have symptoms of cognitive control deficits at some level. Therefore, clinicians should evaluate and counsel all families of children with Tourette Syndrome, with or without currently diagnosed ADHD and/or OCD, about the functional ramifications of comorbid symptoms and that they may wax and wane with tic severity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Multiple sclerosis (MS) is the most common demyelinating disease affecting the central nervous system. There is no cure for MS and current therapies have limited efficacy. While the majority of individuals with MS develop significant clinical disability, a subset experiences a disease course with minimal impairment even in the presence of significant apparent tissue damage on magnetic resonance imaging (MRI). The current studies combined functional MRI and diffusion tensor imaging (DTI) to elucidate brain mechanisms associated with lack of clinical disability in patients with MS. Recent evidence has implicated cortical reorganization as a mechanism to limit the clinical manifestation of the disease. Functional MRI was used to test the hypothesis that non-disabled MS patients (Expanded Disability Status Scale ≤ 1.5) show increased recruitment of cognitive control regions (dorsolateral prefrontal and anterior cingulate cortex) while performing sensory, motor and cognitive tasks. Compared to matched healthy controls, patients increased activation of cognitive control brain regions when performing non-dominant hand movements and the 2-back working memory task. Using dynamic causal modeling, we tested whether increased cognitive control recruitment is associated with alterations in connectivity in the working memory functional network. Patients exhibited similar network connectivity to that of control subjects when performing working memory tasks. We subsequently investigated the integrity of major white matter tracts to assess structural connectivity and its relation to activation and functional integration of the cognitive control system. Patients showed substantial alterations in callosal, inferior and posterior white matter tracts and less pronounced involvement of the corticospinal tracts and superior longitudinal fasciculi (SLF). Decreased structural integrity within the right SLF in patients was associated with decreased performance, and decreased activation and connectivity of the cognitive control system when performing working memory tasks. These studies suggest that patient with MS without clinical disability increase cognitive control system recruitment across functional domains and rely on preserved functional and structural connectivity of brain regions associated with this network. Moreover, the current studies show the usefulness of combining brain activation data from functional MRI and structural connectivity data from DTI to improve our understanding of brain adaptation mechanisms to neurological disease.