3 resultados para co-produced water
em DigitalCommons@The Texas Medical Center
Resumo:
A new technique for the detection of microbiological fecal pollution in drinking and in raw surface water has been modified and tested against the standard multiple-tube fermentation technique (most-probable-number, MPN). The performance of the new test in detecting fecal pollution in drinking water has been tested at different incubation temperatures. The basis for the new test was the detection of hydrogen sulfide produced by the hydrogen sulfide producing bacteria which are usually associated with the coliform group. The positive results are indicated by the appearance of a brown to black color in the contents of the fermentation tube within 18 to 24 hours of incubation at 35 (+OR-) .5(DEGREES)C. For this study 158 water samples of different sources have been used. The results were analyzed statistically with the paired t-test and the one-way analysis of variance. No statistically significant difference was noticed between the two methods, when tested 35 (+OR-) .5(DEGREES)C, in detecting fecal pollution in drinking water. The new test showed more positive results with raw surface water, which could be due to the presence of hydrogen sulfide producing bacteria of non-fecal origin like Desulfovibrio and Desulfomaculum. The survival of the hydrogen sulfide producing bacteria and the coliforms was also tested over a 7-day period, and the results showed no significant difference. The two methods showed no significant difference when used to detect fecal pollution at a very low coliform density. The results showed that the new test is mostly effective, in detecting fecal pollution in drinking water, when used at 35 (+OR-) .5(DEGREES)C. The new test is effective, simple, and less expensive when used to detect fecal pollution in drinking water and raw surface water at 35 (+OR-) .5(DEGREES)C. The method can be used for qualitative and/or quantitative analysis of water in the field and in the laboratory. ^
Resumo:
A study to assess possible exposure to carcinogenic metabolites (aflatoxins) from a mold Aspergillus flavus has been made in a rice producing area of Brazoria County, Texas. One hundred samples of unmilled rice were analyzed by thin-layer chromatography (TLC) for the amount of aflatoxin produced by the mold during rice growth and storage. Two well water samples and two rice elevator dust samples were also checked for possible aflatoxin content. The mortality rates from gastrointestinal and urinary tract cancers in the rice-growing part of the county were compared with mortality rates in the nonrice-producing areas of the same county.^ This study was an outgrowth of an earlier investigation by Cech and co-workers in Brazoria County which focused on environmental differences, specifically on the quality of drinking water in the former residences of decedents from primary liver cancer. It also compared subjects who died from other causes. The author of this dissertation participated in this phase of the overall investigation by performing some of the chemical analyses and by preparing synographic maps of water quality, and thus, part of those results from the early phase is also included in this manuscript.^ No aflatoxin was detected by TLC methods. However, when extracts of rice dust were checked for mutagenesis by the Ames Salmonella-microsome assay as a supplement to the TLC analysis, the result suggested that these dusts might have contained mutagenic material. The age-adjusted mortality rates in the rice-growing area were higher than those in the comparison area for both male and female gastrointestinal tract cancer and for male urinary tract cancer, but the differences were not statistically significant. ^
Resumo:
Background Past and recent evidence shows that radionuclides in drinking water may be a public health concern. Developmental thresholds for birth defects with respect to chronic low level domestic radiation exposures, such as through drinking water, have not been definitely recognized, and there is a strong need to address this deficiency in information. In this study we examined the geographic distribution of orofacial cleft birth defects in and around uranium mining district Counties in South Texas (Atascosa, Bee, Brooks, Calhoun, Duval, Goliad, Hidalgo, Jim Hogg, Jim Wells, Karnes, Kleberg, Live Oak, McMullen, Nueces, San Patricio, Refugio, Starr, Victoria, Webb, and Zavala), from 1999 to 2007. The probable association of cleft birth defect rates by ZIP codes classified according to uranium and radium concentrations in drinking water supplies was evaluated. Similar associations between orofacial cleft birth defects and radium/radon in drinking water were reported earlier by Cech and co-investigators in another of the Gulf Coast region (Harris County, Texas).50, 55 Since substantial uranium mining activity existed and still exists in South Texas, contamination of drinking water sources with radiation and its relation to birth defects is a ground for concern. ^ Methods Residential addresses of orofacial cleft birth defect cases, as well as live births within the twenty Counties during 1999-2007 were geocoded and mapped. Prevalence rates were calculated by ZIP codes and were mapped accordingly. Locations of drinking water supplies were also geocoded and mapped. ZIP codes were stratified as having high combined uranium (≥30μg/L) vs. low combined uranium (<30μg/L). Likewise, ZIP codes having the uranium isotope, Ra-226 in drinking water, were also stratified as having elevated radium (≥3 pCi/L) vs. low radium (<3 pCi/L). A linear regression was performed using STATA® generalized linear model (GLM) program to evaluate the probable association between cleft birth defect rates by ZIP codes and concentration of uranium and radium via domestic water supply. These rates were further adjusted for potentially confounding variables such as maternal age, education, occupation, and ethnicity. ^ Results This study showed higher rates of cleft births in ZIP codes classified as having high combined uranium versus ZIP codes having low combined uranium. The model was further improved by adding radium stratified as explained above. Adjustment for maternal age and ethnicity did not substantially affect the statistical significance of uranium or radium concentrations in household water supplies. ^ Conclusion Although this study lacks individual exposure levels, the findings suggest a significant association between elevated uranium and radium concentrations in tap water and high orofacial birth defect rates by ZIP codes. Future case-control studies that can measure individual exposure levels and adjust for contending risk factors could result in a better understanding of the exposure-disease association.^