3 resultados para clastogenicity
em DigitalCommons@The Texas Medical Center
Resumo:
The clinical application of chemopreventive agents is expected to prevent the appearance of cancer by arresting carcinogenesis or reversing it in the precancerous stages. The hypothesis of the present investigations was that chemopreventive agents (retinoids and antioxidant vitamins) may counteract the clastogenic effects of bleomycin in vitro in both lymphoblastoid cell lines and primary lymphocyte cultures and that a similar phenomenon can be detected in lymphocytes from individuals treated with 13-cis-retinoic acid. The efficacy of 13-cis-retinoic acid, n-(4-hydroxyphenyl)-retinamide, ascorbic acid, n-acetyl-l-cysteine, alpha-tocopherol, and alpha-tocopherol-acid succinate was tested against bleomycin-induced chromosomal breakage.^ The results provided direct evidence of the concentration-related protective effects of these agents against bleomycin-induced clastogenicity in cultures of human lymphoblastoid cell lines in vitro. Similar anticlastogenic protection was demonstrated with 13-cis-retinoic acid, ascorbic acid, n-acetyl-l-cysteine, and alpha-tocopherol-acid succinate in primary lymphocyte cultures in vitro. The in vitro anticlastogenic effect of 13-cis-retinoic acid was also demonstrated in lymphocyte cultures from peripheral blood samples from patients treated with this retinoid.^ An important consideration is that the concentrations used in the present investigations are comparable to those achieved in clinical situations.^ The in vitro anticlastogenic effect of these retinoids and antioxidants may constitute an important element of their chemopreventive properties. The results corroborate the hypothesis that these compounds may be effective in clinical chemoprevention trials. The bleomycin-assay may also be used as a short-term test to evaluate the antimutagenic effects of various agents. ^
Resumo:
Benzene was studied in its target organ of effect, the bone marrow, with the micronucleus test and metaphase chromosomal analysis. Groups of 5 or 10, male and female CD-1 mice were treated with one or two p.o. or i.p. doses of benzene (440 mg/kg) or toluene (430, 860 or 1720 mg/kg) or both, and sacrificed 30 or 54h after the first dose. Benzene-treated animals were pretreated with phenobarbital (PB), 3-methylcholanthrene (3MC), (beta)-naphthoflavone ((beta)NF), SKF-525A, or Aroclor 1254. Toluene showed no clastogenic activity and reduced the clastogenic effect of co-administered benzene. None of the pretreatments protected against benzene clastogenicity. 3MC and (beta)NF greatly promoted benzene myeloclastogenicity. Dose response curves for benzene myeloclastogenicity were much steeper with 3MC induction than without. Micronuclei (MN) were 4-6 times higher by p.o. than i.p. benzene administration. This was not due to bacterial flora since no difference was found between germ-free and conventional males gavaged with benzene. A sensitive high-pressure liquid chromatographic method was developed and used to explore the relation between metabolic profiles of benzene in urine and MN after various pretreatments. Phenol (PH), trans-trans-muconic acid (MA) and hydroquinone (HQ) in the 48h male mouse urine accounted, respectively, for 12.8-22.8, 1.8-4.7 and 1.5-3.7% of the single oral dose of benzene (880, 440 and 220 mg/kg). Catechol (CT) was seen in trace amounts. MA was identified by ultraviolet and infrared spectroscopy and elemental analysis. Urinary metabolites--especially MA, HQ, and phenol glucuronide--correlated well with MN and were dependent on both the dose and the metabolism of benzene. Benzene metabolism was most inducible by cytochrome P-448 enzyme inducers, by p.o. > i.p., in males > females, and inhibited by toluene. Ph, CT or HQ administered p.o., 250, 150 and 250 mg/kg, respectively, or at 150 mg/kg x 2 after 3MC pretreatment, failed to reproduce the potent myeloclastogenicity of benzene. In fact, only HQ was mildly clastogenic. ^
Resumo:
The use of coal for fuel in place of oil and natural gas has been increasing in the United States. Typically, users store their reserves of coal outdoors in large piles and rainfall on the coal creates runoffs which may contain materials hazardous to the environment and the public's health. To study this hazard, rainfall on model coal piles was simulated, using deionized water and four coals of varying sulfur content. The simulated surface runoffs were collected during 9 rainfall simulations spaced 15 days apart. The runoffs were analyzed for 13 standard water quality parameters, extracted with organic solvents and then analyzed with capillary column GC/MS, and the extracts were tested for mutagenicity with the Ames Salmonella microsomal assay and for clastogenicity with Chinese hamster ovary cells.^ The runoffs from the high-sulfur coals and the lignite exhibited extremes of pH (acidity), specific conductance, chemical oxygen demand, and total suspended solids; the low-sulfur coal runoffs did not exhibit these extremes. Without treatment, effluents from these high-sulfur coals and lignite would not comply with federal water quality guidelines.^ Most extracts of the simulated surface runoffs contained at least 10 organic compounds including polycyclic aromatic hydrocarbons, their methyl and ethyl homologs, olefins, paraffins, and some terpenes. The concentrations of these compounds were generally less than 50 (mu)g/l in most extracts.^ Some of the extracts were weakly mutagenic and affected both a DNA-repair proficient and deficient Salmonella strain. The addition of S9 decreased the effect significantly. Extracts of runoffs from the low-sulfur coal were not mutagenic.^ All extracts were clastogenic. Extracts of runoffs from the high-sulfur coals were both clastogenic and cytotoxic; those from the low-sulfur coal and the lignite were less clastogenic and not cytotoxic. Clastogenicity occurred with and without S9 activation. Chromosomal lesions included gaps, breaks and exchanges. These data suggest a relationship between the sulfur content of a coal, its mutagenicity and also its clastogenicity.^ The runoffs from actual coal piles should be investigated for possible genotoxic effects in view of the data presented in this study.^