17 resultados para class 3 cells

em DigitalCommons@The Texas Medical Center


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Changes in the levels of intracellular calcium mediate multiple biological effects, including apoptosis, in some tumor cells. Early studies demonstrated that prostate cancer cells are highly sensitive to alterations in the levels of their intracellular calcium pools. Furthermore, it has been established that apoptosis in prostate cancer could be initiated through calcium-selective ionophores, or inhibitors of intracellular calcium pumps. High sensitivity to changes in intracellular calcium levels may therefore be exploited as a novel mechanism for controlling prostate cancer apoptotic thresholds; however, the mechanisms associated with this process are poorly understood. To investigate the role of calcium as a mediator of prostate cancer cell death and its effects on caspase activation, LNCaP and PC-3 cell response to the calcium ionophore A23187, were examined. LNCaP cells were highly sensitive to changes in intracellular calcium, and subtoxic concentrations of A23187 facilitated apoptosis initiated by cytokines (TNF or TRAIL). In contrast, PC-3 cell death was not affected by A23187 or cytokines. A23187 caused rapid and concentration-dependent activation of calpain in LNCaP (but not PC-3 cells) which correlated with cleavage of calpain substrates caspase-7 and PTP1B. Cleavage of PTP1B from a 50 kDa to 42 kDa protein correlated with its translocation from the endoplasmic reticulum to the cytosol and with inhibition of tyrosine phosphorylation. Caspase-7 was cleaved from a 35 kDa to 30 kDa protein in response to A23187 in LNCaP (but not PC-3) cells and correlated with activation of both upstream and downstream caspases. Extracts from A23187-treated LNCaP cells, or PC-3 cells transiently transfected with calpain, mediated similar processing of in vitro transcribed and translated (TNT) caspase-7. In vitro processing of caspase-7 correlated with its proteolytic activation, which was inhibited by calpain inhibitor (calpeptin) and to some degree, by caspase inhibitors (zVAD, DEVD). Together, these results suggest that calpain is directly involved in calcium-mediated apoptosis of prostate cancer cells through activation and cleavage of caspase-7 and other substrates. Loss of calpain activation may therefore play a critical role in apoptotic resistance of some prostate cancer cells. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The progression of hormone responsive to hormone refractory prostate cancer poses a major clinical challenge in the successful treatment of prostate cancer. The hormone refractory prostate cancer cells exhibit resistance not only to castrate levels of testosterone, but also to other therapeutic modalities and hence become lethal. Currently, there is no effective treatment available for managing this cancer. These observations underscore the urgency to investigate mechanism(s) that contribute to the progression of hormone-responsive to hormone-refractory prostate cancer and to target them for improved clinical outcomes. Tissue transglutaminase (TG2) is a multifunctional pro-inflammatory protein involved in diverse physiological processes such as inflammation, tissue repair, and wound healing. Its expression is also implicated in pathological conditions such as cancer and fibrosis. Interestingly, we found that the androgen-independent prostate cancer cell lines, which lacked androgen receptor (AR) expression, contained high basal levels of tissue transglutaminase. Inversely, the cell lines that expressed androgen receptor lacked transglutaminase expression. This attracted our attention to investigate the possible role this protein may play in the progression of prostate cancer, especially in view of recent observations that its expression is linked with increased invasion, metastasis, and drug resistance in multiple cancer cell types. The results we obtained were rather surprising and revealed that stable expression of tissue transglutaminase in androgen-sensitive LNCaP prostate cancer cells rendered these cells independent of androgen for growth and survival by silencing the AR expression. The AR silencing in TG2 expressing cells (TG2-infected LNCaP and PC-3 cells) was due to TG2-induced activation of the inflammatory nuclear transcription factor-kB (NF-kB). Thus, TG2 induced NF-kB was found to directly bind to the AR promoter. Importantly, TG2 protein was specifically recruited to the AR promoter in complex with the p65 subunit of NF-kB. Moreover, TG2 expressing LNCaP and PC-3 cells exhibited epithelial-to-mesenchymal transition, as evidenced by gain of mesenchymal (such as fibronectin, vimentin, etc.) and loss of epithelial markers (such as E-cadherin, b-catenin). Taken together, these results suggested a new function for TG2 and revealed a novel mechanism that is responsible for the progression of prostate cancer to the aggressive hormone-refractory phenotype.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Human placental lactogen (hPL) and human growth hormone (hGH) comprise a multigene family that share $>$90% nucleic acid sequence homology including 500 bp of 5$\sp\prime$ flanking sequence. Despite these similarities, hGH is produced in the anterior pituitary while hPL is expressed in the placenta. For most genes studied to date, regulation of expression occurs by alterations at the level of transcriptional initiation. Nuclear proteins bind specific DNA sequences in the promoter to regulate gene expression. In this study, the hPL$\sb3$ promoter was analyzed for DNA sequences that contribute to its expression. The interaction between the hPL$\sb3$ promoter and nuclear proteins was examined using nuclear extracts from placental and non-placental cells.^ To identify regulatory elements in the promoter of the hPL$\sb3$ gene, 5$\sp\prime$ deletion mutants were constructed by cleaving 1200 bp of upstream sequence with various restriction enzymes. These DNA fragments were ligated 5$\sp\prime$ to a promoterless bacterial gene chloramphenicol acetyltransferase (CAT) and transfected into JEG-3 cells, a human placental choriocarcinoma cell line. The level of CAT activity reflects the ability of the promoter mutants to activate transcription. Deletion of the sequence between $-$142 bp and $-$129 bp, relative to the start of transcription, resulted in an 8-fold decrease in CAT activity. Nuclear proteins from JEG-3, HeLa, and HepG2 (human liver cells), formed specific binding complexes with this region of the hPL$\sb3$ promoter, as shown by gel mobility shift assay. The $-$142 bp to $-$129 bp region contains a sequence similar to that of a variant binding site for the transcription factor Sp1. Sp1-like proteins were identified by DNA binding assay, in the nuclear extracts of the three cell lines. A series of G nucleotides in the hPL$\sb3$ promoter regulatory region were identified by methylation interference assay to interact with the DNA-binding proteins and the pattern obtained is similar to that for other Sp1 binding sites that have been studied. This suggests that hPL$\sb3$ may be transcriptionally regulated by Sp1 or a Sp1-like transacting factor. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Using a human terato-carcinoma cell line, PA-1, the functional role of the oncogenes and tumor suppressor gene involved in the multistep process of carcinogenesis have been analyzed. The expression of AP-2 was strongly correlated with the susceptibility to ras transformation. The differential responsiveness to growth factors between stage 1 ras resistant cells and stage 2 ras susceptible cells was observed, indicating that the ability of stage 2 cells to respond to the mutated ras oncogenes in transformation correlated with the ability to be stimulated by certain growth factors. Using differential screening of cDNA libraries, a number of differentially expressed cDNA clones was isolated. One of those, clone 12, is overexpressed in ras transformed stage 3 cells. The amino acid sequence of clone 12 is almost identical to a mouse LLrep3 gene that was growth-regulated, and 78% similar to a yeast ribosomal protein S4. These results suggest that the S4 gene may be involved in regulation of growth. Clone 9 is expressed in stage 1 ras resistant cells (3.5-kb and 3.0-kb transcripts) but the expression of this clone in stage 2 ras susceptible cells and stage 3 ras-transformed cells is greatly diminished. The expression of this cDNA clone was increased to at least five fold in ras resistant cells and nontumorigenic hybrids treated with retinoic acid but not increased in retinoic acid treated ras susceptible cells, ras transformed cells and the tumorigenic segregants. Partial sequence of this clone showed no homology to the sequences in Genbank. These findings suggest that clone 9 could be a suppressor gene or the genes that are involved in the biochemical pathway of tumor suppression or neurogenic differentiation. The apparent pleiotropic effect of the loss of this suppressor gene function support Harris' proposal that tumor suppressor genes regulate differentiation. The tumor suppressor gene may act as negative regulator of tumor growth by controlling gene expression in differentiation. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Human pro-TNF-$\alpha$ is a 26 kd type II transmembrane protein, and it is the precursor of 17 kd mature TNF. Pro-TNF release mature from its extracellular domain by proteolytic cleavage between resideu Ava ($-$1) and Val (+1). Both forms of TNF are biologically active and the native form of mature TNF is a bell-shaped trimer. The structure of pro-TNF was studied both in intact cell system and in an in vitro translation system by chemical crosslinking. We found that human pro-TNF protein exist as a trimer in intact cells (LPS-induced THP-1 cells and TNF cDNA transfected COS-3 cells) and this trimeric structure is assembled intracellularly, possibly in the ER. By analysis several deletion mutants, we observed a correlation between expression of pro-TNF cytotoxicity in a juxtacrine fashion and detection of the trimer, suggesting the trimeric structure is very important for its biologic activity. With a series of deletion mutants in the linking domain, we found that the small deletion did not block the cleavage and large deletion did regardless of the presence or absence of the native cleavage site, suggesting that the length of the residues between the plasma membrane and the base of the trimer determines the rate of the cleavage, possibly by blocking the accessibility of the cleavage enzyme to its action site. Our data also suggest that the native cleavage site is not sufficient for the release of mature TNF and alternative cleavage site(s) exists. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The purpose of these studies was to investigate the role of nitric oxide (NO) in tumor metastasis. K-1735 Metastatic cells survived in blood circulation to produce experimental lung metastases, whereas nonmetastatic cells did not. After incubation with combination cytokines or lipopolysaccharide (LPS), nonmetastatic cells exhibited high levels of inducible nitric oxide synthase (iNOS) activity and NO production, whereas metastatic cells did not. The production of NO directly correlated with cytotoxic effects of cytokines or LPS. To provide direct evidence for the inverse correlation between the production of endogenous NO and the ability of K-1735 cells to survive in syngeneic mice to produce lung metastases, highly metastatic K-1735 clone 4 cells (C4.P), which express low levels of iNOS, were transfected with a functional iNOS (C4.L8), inactive-mutated iNOS (C4.S2), or neomycin-resistance (C4.Neo) genes in medium containing 3 mM NMA. C4.P, C4.Neo.3, and C4.S2.3 cells were highly metastatic whereas C4.L8.5 cells were not metastatic. The C4.L8.5 cells produced slow growing subcutaneous tumors in nude mice, whereas the other three lines produced fast growing tumors. In vitro studies indicated that the expression of iNOS in C4.L8.5 cells induced apoptosis. Collectively, these data demonstrate that the expression of recombinant iNOS in melanoma cells is associated with apoptosis, suppression of tumorigenicity, and abrogation of metastasis.^ Furthermore, multiple systemic administrations of multilamellar vesicle-liposomes (MLV) containing the lipopeptide CGP 31362 (MLV-31362) or MLV-31362 combined with murine interferon-gamma (IFN-$\gamma$) eradicated the metastases by M5076 reticular cell sarcoma. Tumor regression correlated with iNOS expression within the tumor lesions and with increased NO production. The administration of NMA significantly decreased NO production and diminished the antitumor activities. These data imply that the activation of iNOS can serve as a target for immunotherapeutic agents for treatment of murine reticulum cell sarcoma metastases. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Osteopontin (OPN) is a highly-phosphorylated extracellular matrix protein localized in bone, kidney, placenta, T-lymphocytes, macrophages, smooth muscle of the vascular system, milk, urine, and plasma. In ROS 17/2.8 osteoblast-like osteosarcoma cells, 1,25-dihydroxyvitamin D3 [1,25(OH)2D 3] regulates OPN at the transcriptional level resulting in increased steady state mRNA levels and increased production of OPN protein, maximal at 48 hours. Using ROS 17/2.8 cells as an osteoblast model, OPN was purified from culture medium after three hour treatments of either vehicle (ethanol) or 1,25(OH)2D3 via barium citrate precipitation followed by immunoaffinity chromatography. ^ Here, further evidence of regulation of OPN by 1,25(OH)2D 3 at the posttranslational level is presented. Prior to the up-regulation of OPN at the transcriptional level, 1,25(OH)2D3 induces a shift in OPN isoelectric point (pI) detected on two-dimensional gels from pI 4.6 to pI 5.1. Loading equal amounts of [32P]-labeled OPN recovered from ROS 17/2.8 cells exposed to 1,25(OH)2D3 or vehicle alone for three hours reveals that the shift from pI 4.6 to 5.1 is the result of reduced phosphorylation. Using structural analogs to 1,25(OH) 2D3, analog AT [25-(OH)-16-ene-23-yne-D3], which triggers Ca2+ influx through voltage sensitive Ca2+ channels but does not bind to the vitamin D receptor, mimicked the OPN pI shift while analog BT [1,25(OH)2-22-ene-24-cyclopropyl-D 3], which binds to the vitamin D receptor but does not allow Ca 2+ influx, did not. Inclusion of the Ca2+ channel blocker nifedipine also blocks the charge shift conversion of OPN. Further analysis of the signaling pathway initiated by 1,25(OH)2D3 reveals that inhibition of the cyclic 3′,5′ -adenosine monophosphate-dependent kinase, protein kinase A, or inhibition of the cyclic 3′,5′-guanine monophosphate-dependent kinase, protein kinase G, also prevents the charge shift conversion. ^ Isolation of OPN from rat femurs and tibiae provides evidence for the existence of these two OPN charge forms in vivo, evidenced by differential migration on isoelectric focusing gels and sodium dodecyl sulfate-polyacrylamide gels. Peptide sequencing of rat long bone fractions revealed the presence of a presumed dentin specific protein, dentin matrix protein-1 (DMP-1). Western blot analysis confirmed the existence of DMP-1 in these fractions. ^ Using the OPN charge forms in functional assays, it was determined that the charge forms have differential roles in both cell surface and mineralization functions. In cell attachment assays and Ca2+ influx assays using PC-3 prostate cancer cells, the pI 5.1 charge form of OPN was found to permit binding and increase intracellular Ca2+ concentrations of PC-3 cells. The increase in intracellular Ca2+ concentration was found to be integrin αvβ3-dependent. In mineralization assays, the pI 4.6 charge form of OPN promoted hydroxyapatite formation, while the pI 5.1 charge form had improved Ca2+ binding ability. ^ In conclusion, these findings suggest that 1,25(OH) 2D3 regulates OPN not only at the transcriptional level, but also plays a role in determination of the OPN phosphorylation state. The latter involves a short term (less than three hours) treatment and is associated with membrane-initiated Ca2+ influx. Functional assays utilizing the two OPN charge forms reveal the dependence of OPN post-translational state on its function. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The human choriocarcinoma cell line JEG-3 is heterozygous at the adenosine deaminase (ADA) gene locus. Both allelic genes are under strong but incomplete repression causing a very low level expression of the gene locus. Because cytotoxic adenosine analogues such as 9-(beta)-D arabinofuranosyladenine (ara-A) and 9-(beta)-D xylofuranosyladenine (xyl-A) can be specifically detoxified by the action of ADA, these analogues were used to select for JEG-3 derived cells which had increased ADA expression. When JEG-3 cells were subjected to a multi-step, successively increasing dosage of either ara-A or xyl-A, resistant cells with increased ADA expression were generated. This increased ADA expression in the resistant cells was unstable, so that when the selective pressure was removed, cellular ADA expression would decrease. Subclone analysis of xyl-A resistant cells revealed that compared to parental JEG-3 cells, individual resistant cells had either elevated ADA levels or decreased adenosine kinase (ADK) levels or both. This altered ADA and ADK expression in the resistant cells were found to be independent events. Because of high endogenous tissue conversion factor (TCF) expression in the JEG-3 cells, the allelic nature of the increased ADA expression in most of the resistant cells could not be determined. However, several resistant subcloned cells were found to have lost TCF expression. These TCF('-) cells expressed only the ADA*2 allelic gene product. Cell fusion experiments demonstrated that the ADA*1 allelic gene was intact and functional in the A3-1A7 cell line. Chromosomal analysis of the A3-1A7 cells showed that they had no double-minutes or homogeneously staining chromosomal regions, although a pair of new chromosomes were found in these cells. Segregation analysis of the hybrid cells indicated that an ADA*2 allelic gene was probably located on this new chromosome. The analysis of the A3-1A7 cell line suggested that the expression of only ADA 2 in these cells was the result of possibly a cis-deregulation of the ADA gene locus or more probably an amplification of the ADA*2 allelic gene. Two effective positive selection systems for ADA('+) cells were also developed and tested. These selection systems should eventually lead to the isolation of the ADA gene.^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Kinases are part of a complex network of signaling pathways that enable a cell to respond to changes in environmental conditions in a regulated and coordinated way. For example, Glycogen Synthase Kinase 3 beta (GSK3β) modulates conformational changes, protein-protein interaction, protein degradation, and activation of unique domains in proteins that transduce signals from the extracellular milieu to the nucleus. ^ In this project, I investigated the expression and function that GSK3β exhibits in prostate cells. The capacity of GSK3β to regulate two transcription factors (JUN and CREB), which are known to be inversely utilized in prostate tumor cells, was measured. JUN/AP1 is constitutively activated in PC-3 cells; whereas, CREB/CRE activity is ∼20 fold less than the former. GSK3β overexpression obliterates JUN/AP1 activity. With respect to CREB GSK3β increases CREB/CRE activity. Cellular levels of active GSK3β can determine whether JUN or CREB is preferentially active in the PC-3s. Theoretically, in response to a particular cellular context or stimulus, a cell may coordinate JUN and CREB function by regulating GSK3β.^ A comparison of various prostate cell lines showed that active GSK3β is less expressed in normal prostate epithelial cells than in tumor cells. Differentially expressed active (GSK3β) may correlate with progression of prostate carcinoma. If a known marker associated with carcinoma of the prostate could be shown to be regulated by GSK3β then, further study of GSK3β may lead to a better understanding of both possible prevention of the disease and improved therapy for advanced stages. ^ The androgen receptor (AR) is an intriguing phosphoprotein whose regulation is potentially determined by a variety of kinases. One of these is (GSK3β) I found that (GSK3β) is a regulator of the androgen receptor in both the unliganded and liganded states. It can inhibit AR function as measured by reporter assays. Also, GSK3β associates with the AR at the DNA binding domain because deletion constructs expressing either the n-terminus or the c-terminus (both having the DBD in common) immunoprecipitated with GSK3β. Increased understanding of how GSK3β functions in prostate cancer would provide clues into how (1) certain signal pathways are coordinated and (2) the androgen receptor may be regulated. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The adenovirus type 5 E1A gene was originally developed as a gene therapy to inhibit tumorigenicity of HER-2-overexpressing cells by transcriptional downregulation of HER-2. Our goal is to improve the overall efficacy of E1A gene therapy. To achieve this goal, we have conducted two preclinical experiments. ^ First, we hypothesized that Bcl-2 overexpressing ovarian cancer is resistant to E1A gene therapy. This hypothesis is based on that the 19 kDa protein product of the adenoviral E1B gene which is homologous to Bcl-2 inhibits E1A-induced apoptosis. Treating high Bcl-2-xpressing cells with E1A in combination with an antisense oligonucleotide to Bcl-2 (Bcl-2-ASO) resulted in a significant decrease in cell viability due to an increased rate of apoptosis relative to cells treated with E1A alone. In an ovarian cancer xenograft model, mice implanted with low HER-2, high Bcl-2 cells, treated with E1A plus Bcl-2-ASO led to prolonged survival. Bcl-2 thus may serve as a predictive molecular marker enabling us to select patients with ovarian cancer who will benefit significantly from E1A gene therapy. ^ Second, we elucidated the molecular mechanism governing the anti-tumor effect of E1A in ovarian cancer to identify a more potent tumor suppressor gene. We identified PEA-15 (phospho-protein enriched in astrocytes) upregulated in E1A transfected low HER-2-expressing OVCAR-3 ovarian cancer cell, which showed decreased cell proliferation. PEA-15 moved ERK from the nucleus to the cytoplasm and inhibited ERK-dependent transcription and proliferation. Using small interfering RNA to knock down PEA-15 expression in OVCAR-3 cells made to constitutively express E1A resulted in accumulation of phosphoERK in the nucleus, an increase in Elk-1 activity, DNA synthesis, and anchorage-independent growth. PEA-15 also independently suppressed colony formation in some breast and ovarian cancer cell lines in which E1A is known to have anti-tumor activity. We conclude that the anti-tumor activity of E1A depends on PEA-15. ^ In summary, (1) Bcl-2 may serve as a predictive molecular marker of E1A gene therapy, allowing us to select patients and improve efficacy of E1A gene therapy. (2) PEA-15 was identified as a component of the molecular mechanism governing the anti-tumor activity of E1A in ovarian cancer, (3) PEA-15 may be developed as a novel therapeutic gene. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

One growth factor receptor commonly altered during prostate tumor progression is the epidermal growth factor receptor (EGFR). EGFR signaling regulates Erk1/2 phosphorylation through multiple mechanisms. We hypothesized that PKC isozymes play a role in EGFR-dependent signaling, and that through PKC isozyme selective inhibition, EGFR-dependent Erk1/2 activation can be attenuated in AICaP cells. ^ To test the hypothesis, PKC activation was induced by 12-O-tetradecanoyi-phorbol-13-acetate (TPA) in PC-3 cells. As a result, Erk1/2 was activated similarly to what was observed upon EGF stimulation. EGF-induced Erk1/2 activation in PC-3 cells was PKC-dependent, as demonstrated through use of a selective PKC inhibitor, GF109203X. This provides evidence for PKC regulatory control over Erk1/2 signaling downstream of EGFR. Next, we demonstrated that when PKC was inhibited by GF109203X, EGF-stimulated Erk1/2 activation was inhibited in PC-3, but not DU145 cells. TPA-stimulated Erk1/2 activation was EGFR-dependent in both DU145 and PC-3 cells, demonstrated through abrogation of Erk1/2 activation by a selective EGFR inhibitor AG1478. These data support PKC control at or upstream of EGFR in AICaP cells. We observed that interfering with ligand/EGFR binding abrogated Erk1/2 signaling in TPA-stimulated cells, revealing a role for PKC upstream of EGFR. ^ Next, we determined which PKC isozymes might be responsible for Erk1/2 regulation. We first determined that human AICaP cell lines express the same PKC isozymes as those observed in clinical prostate cancer specimens (α, ϵ, &zgr;, ι and PKD). Isozyme-selective methods were employed to characterize discrete PKC isozyme function in EGFR-dependent Erk1/2 activation. Pharmacologic inhibitors implicated PKCα in TPA-induced EGFR-dependent Erk1/2 activation in both PC-3 and DU145 cells. Further, the cPKC-specific inhibitor, Gö6976 decreased viablilty of DU145 cells, providing evidence that PKCα is necessary for growth and survival. Finally, resveratrol, a phytochemical with strong cancer therapeutic potential inhibited Erk1/2 activation, and this correlated with selective inhibition of PKCα. These results demonstrate that PKC regulates pathways critical to progression of CaP cells, including those mediated by EGFR. Thus, PKC isozyme-selective targeting is an attractive therapeutic strategy, and understanding the role of specific PKC isozymes in CaP cell growth and survival may aid in development of effective, non-toxic PKC-targeted therapies. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Restoration of the tumor-suppression function by gene transfer of the melanoma differentiation-associated gene 7 (MDA7)/interleukin 24 (IL-24) successfully induces apoptosis in melanoma tumors in vivo. To address the molecular mechanisms involved, we previously revealed that MDA7/IL-24 treatment of melanoma cells down-regulates interferon regulatory factor (IRF)-1 expression and concomitantly up-regulates IRF-2 expression, which competes with the activity of IRF-1 and reverses the induction of IRF-1-regulated inducible nitric oxide synthase (iNOS). Interferons (IFNs) influence melanoma cell survival by modulating apoptosis. A class I IFN (IFN-alpha) has been approved for the treatment of advanced melanoma with some limited success. A class II IFN (IFN-gamma), on the other hand, supports melanoma cell survival, possibly through constitutive activation of iNOS expression. We therefore conducted this study to explore the molecular pathways of MDA7/IL-24 regulation of apoptosis via the intracellular induction of IFNs in melanoma. We hypothesized that the restoration of the MDA7/IL-24 axis leads to upregulation of class I IFNs and induction of the apoptotic cascade. We found that MDA7/IL-24 induces the secretion of endogenous IFN-beta, another class I IFN, leading to the arrest of melanoma cell growth and apoptosis. We also identified a series of apoptotic markers that play a role in this pathway, including the regulation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and Fas-FasL. In summary, we described a novel pathway of MDA7/IL-24 regulation of apoptosis in melanoma tumors via endogenous IFN-beta induction followed by IRF regulation and TRAIL/FasL system activation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Antigenic changes present in nonantigenic tumor cells exposed to UV radiation (UV) in vitro were investigated by addressing the following questions: (1) Are antigenic variants (AV) produced that are rejected in normal but not immunosuppressed mice? (2) Does generation of AV depend upon intrinsic properties of the cells exposed or result from the action of UV? (3) Is antigenic modification induced by UV due to increased histocompatibility antigen expression? (4) Do AV crossreact immunologically with parental tumor or with other AV? and (5) Is the UV-associated common antigen expressed on UV-induced tumors present on UV-irradiated tumor cells? AV were generated at different frequencies following in vitro UV irradiation of a spontaneous murine fibrosarcoma (51% of cell lines tested), a murine melanoma (56%), and two melanoma clones (100% and 11%). This indicated that the percentage of AV produced is an intrinsic property of the cell line exposed. The increased antigenicity did not correlate with an increased expression of class I histocompatibility antigens. Immunological experiments demonstrated that the AV and parental cells shared a determinant that was susceptible to immune recognition, but incapable of inducing immunity. In contrast, the AV were noncrossreactive, suggesting that variant-specific antigens were also expressed. Finally, the AV were recognized by UV-induced suppressor cells, indicating that the UV-associated common antigen expressed by UV-induced tumors was also present. This investigation provides new information on the susceptibility of tumors to antigenic modification by UV and on the relationship between tumor antigens and neoplastic transformation. Furthermore, it suggests an immunological approach for cancer therapy. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Spec genes of the sea urchin Stronylocentrotus purpuratus serves as an excellent model for studying cell type-specific gene expression during early embryogenesis. The Spec1/Spec2 genes encode cytosolic calcium-binding proteins related to the calmodulin/troponin C/myosin light chain superfamily. Members of the Spec gene family are activated shortly after the sixth cleavage as the lineage-specific founder cells giving rise to aboral ectoderm are established, and the accumulation of the Spec mRNAs is limited exclusively to aboral ectoderm cell lineages. In this dissertation, the transcriptional regulation of the Spec genes was studied. Sequence comparisons of the Spec gene 5$\sp\prime$ flanking regions showed that a DNA block of approximately 800 bp from the 3$\sp\prime$ end of the first exon to the 5$\sp\prime$ end of a repetitive DNA element, termed RSR, was highly conserved. In Spec2a, the conserved region was a continuous stretch of DNA, but in Spec1 and Spec2c, DNA insertions interrupt the conserved sequence block and alter the relative placement of the RSR element and other 5$\sp\prime$ flanking DNA. Thus, drastic rearrangements have occurred within the putative control regions of the Spec genes. In vivo expression experiments using the sea urchin embryo gene-transfer system showed that while the 5$\sp\prime$ flanking regions of all three Spec genes conferred proper temporal activation to the reporter CAT gene, only the Spec2a 5$\sp\prime$ flanking region could restrict lacZ gene expression to aboral ectoderm cells. However, the Spec2a conserved region alone was not sufficient to confer proper spatial expression, suggesting that negative spatial elements are also associated with the proper activation of Spec2a. A major positive regulatory region, defined as the RSR enhancer, was identified between base pairs $-$631 and $-$443 on Spec2a. The RSR enhancer was essential for maximal activity and conferred preferential aboral ectoderm expression to a lacZ reporter gene. DNaseI footprinting and band-shift analysis of the RSR enhancer revealed multiple DNA-elements. One of the elements, an A/T-rich sequence called the A/T palindrome was studied in detail. This element binds a single 45-kDa nuclear protein, the A/T palindrome binding protein (A/TBP), whose DNA-binding specificity suggests a possible relationship with the bicoid-class homeodomain proteins. Mutated A/T palindromes are incapable of binding the 45-kDa protein and lower promoter activity by 8-fold. DNA-binding activity for A/TBP is low in unfertilized eggs, increases by the 16-cell stage and continues rising in blastulae. These data suggest that A/TBP plays a major role in the activation of the Spec2a gene in aboral ectoderm cells. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A UV-induced mutation of the enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPD) was characterized in the CHO clone A24. The asymmetric 4-banded zymogram and an in vitro GAPD activity equal to that of wild type cells were not consistent with models of a mutant heterozygote producing equal amounts of wild type and either catalytically active or inactive mutant subunits that interacted randomly. Cumulative evidence indicated that the site of the mutation was the GAPD structural locus expressed in CHO wild type cells, and that the mutant allele coded for a subunit that differed from the wild type subunit in stability and kinetics. The evidence included the appearance of a fifth band, the putative mutant homotetramer, after addition of the substrate glyceraldehyde-3-phosphate (GAP) to the gel matrix; dilution experiments indicating stability differences between the subunits; experiments with subsaturating levels of GAP indicating differences in affinity for the substrate; GAPD zymograms of A24 x mouse hybrids that were consistent with the presence of two distinct A24 subunits; independent segregation of A24 wild type and mutant electrophoretic bands from the hybrids, which was inconsistent with models of mutation of a locus involved in posttranslational modification; the mapping of both wild type and mutant forms of GAPD to chromosome 8; and the failure to detect any evidence of posttranslational modification (of other A24 isozymes, or through mixing of homogenates of A24 and mouse).^ The extent of skewing of the zymogram toward the wild type band, and the unreduced in vitro activity were inconsistent with models based solely on differences in activity of the two subunits. Comparison of wild type homotetramer bands in wild type cells and A24 suggested the latter had a preponderance of wild type subunits over mutant subunits, and had more GAPD tetramers than did CHO controls.^ Two CHO linkages, GAPD-triose phosphate isomerase, and acid phosphatase 2-adenosine deaminase were reported provisionally, and several others were confirmed. ^