5 resultados para chromosomal in situ hybridization
em DigitalCommons@The Texas Medical Center
Resumo:
D1S1, an anonymous human DNA clone originally called (lamda)Ch4-H3 or (lamda)H3, was the first single copy mapped to a human chromosome (1p36) by in situ hybridization. The chromosomal assignment has been confirmed in other laboratories by repeating the in situ hybridization but not by another method. In the present study, hybridization to a panel of hamster-human somatic cell hybrids revealed copies of D1S1 on both chromosomes 1 and 3. Subcloning D1S1 showed that the D1S1 clone itself is from chromosome 3, and the sequence detected by in situ hybridization is at least two copies of part of the chromosome 3 copy. This finding demonstrates the importance of verifying gene mapping with two methods and questions the accuracy of in situ hybridization mapping.^ Non-human mammals have only one copy of D1S1, and the non-human primate D1S1 map closely resembles the human chromosome 3 copy. Thus, the human chromosome 1 copies appear to be part of a very recent duplication that occurred after the divergence between humans and the other great apes.^ A moderately informative HindIII D1S1 RFLP was mapped to chromosome 3. This marker and 12 protein markers were applied to a linkage study of autosomal dominant retinitis pigmentosa (ADRP). None of the markers proved linkage, but adding the three families examined to previously published data raises the ADRP:Rh lod score to 1.92 at (THETA) = 0.30. ^
{\it In vivo\/} induction of DNA changes in cervicovaginal epithelium by perinatal estrogen exposure
Resumo:
Epidemiological studies have associated estrogens with human neoplasm such as the endometrium, cervix, vagina, breast, and liver. Perinatal exposure to natural (17$\beta$-estradiol (17$\beta$-E$\sb2)\rbrack$ and synthetic (diethylstilbestrol (DES)) estrogens induces neoplastic changes in humans and rodents. Previous studies demonstrated that neonatal 17$\beta$-E$\sb2$ treatment increased the nuclear DNA content of mouse cervicovaginal epithelium that preceded histologically evident neoplasia. In order to determine whether this effect was specific to 17$\beta$-E$\sb2,$ associated with chromosomal changes, and relevant to the human, female BALB/c mice were treated neonatally with either 17$\alpha$-estradiol (17$\alpha$-E$\sb2)$ and 5$\beta$-dihydrotestosterone ($5\beta$-DHT), both inactive steroids in adult reproductive tissue, or 17$\beta$-E$\sb2.$ Ten-day-old mice received pellet implants of 17$\beta$-E$\sb2,$ 17$\alpha$-E$\sb2,$ $5\beta$-DHT, or cholesterol. Seventy-day-old cervicovaginal tracts were examined histologically and flow cytometrically. 17$\beta$-E$\sb2$-treated animals were evaluated by fluorescent in situ hybridization (FISH) using a probe specific for chromosome 1. Trisomy of chromosomes 1, 7, 11, and 17 was evaluated by FISH in cervicovaginal material from 19 DES-exposed and 19 control patients.^ $17\beta$-E$\sb2, 17\alpha$-E$\sb2$, and $5\beta$-DHT-induced dramatic developmental and histological changes in the cervicovaginal tract, including hypospadia, hyperplasia, and persistent cornification. The changes induced by 17$\alpha$-E$\sb2$ were equivalent to 17$\beta$-E$\sb2.$ Neonatal 17$\alpha$-E$\sb2$-induced adenosquamous cervicovaginal tumors at 24 months. 17$\alpha$-E$\sb2$ and $5\beta$-DHT significantly increased the nuclear DNA content over control animals, but at significantly lower levels than 17$\beta$-E$\sb2.$ DNA ploidy changes were highest (80%) in animals treated neonatally and secondarily with 17$\beta$-E$\sb2.$ Secondary 17$\alpha$-E$\sb2$ and $5\beta$-DHT administration, unlike 17$\beta$-E$\sb2,$ didn't significantly increase DNA content. Chromosome 1 trisomy incidence was 66% in neonatal 17$\beta$-E$\sb2$-treated animals. Trisomy was evident in 4 DES-exposed patients: one patient with trisomy of chromosomes 1, 7, and 11; one patient with chromosome 7 trisomy; and two patients with chromosome 1 trisomy. These data demonstrated the biological effects of 17$\alpha$-E$\sb2$ and $5\beta$-DHT were age-dependent, 17$\alpha$-E$\sb2$ was equivalent to 17$\beta$-E$\sb2$ and tumorigenic when administered neonatally, and histological changes were not steroid specific. Chromosomal changes were associated with increased nuclear DNA content and chromosomal changes may be an early event in the development of tumors in human DES-exposed tissues. ^
Resumo:
The goal of the present work was to identify and characterize gene sequences that are preferentially expressed in CML in an effort to better understand the molecular basis of the disease. As high abundance mRNAs generally encode proteins that are phenotypically characteristic of cells, positive-negative screening of a CML cDNA library was used to identify cDNA clones containing sequences preferentially transcribed in CML. One cDNA sequence that fulfilled this criterion, C-A3, has been characterized in some detail. It represents a small mRNA ((TURN)496 nucleotides) that is highly abundant ((TURN)2% of the poly(A('+))RNA) in cells from the chronic phase of CML. In situ hybridization to whole cells indicates the principal leukocytes that express C-A3 sequences are eosinophils, basophils and immature myelocytes. Surprisingly, CML patients with high numbers of myeloblasts do not have an abundance of C-A3 transcripts, although transcript levels remain elevated in patients with lymphoblasts. In AML, high transcript levels are only found sporadically and occasionally different sized transcripts can be detected. Sequences from the 3' end of the C-A3 message are present in 2-5 copies per haploid genome. The 3' end of C-A3 localizes to bands 8q21.1 and 8q23 by in situ chromosomal hybridization. This is a region that is often involved in hematopoietic malignancies. Restriction digests of human genomic DNA show a correlation between the presence of a 2.3 kb Hind III fragment and certain types of leukemia. All of the leukemic DNAs tested had this fragment. In comparison, only one of five normal DNAs had a band this size. Analysis of the nucleotide sequence indicates that C-A3 probably encodes a small, hydrophobic peptide which may be part of a larger protein. ^
Resumo:
Double minutes (dm) are small chromatin particles of 0.3 microns diameter found only in the metaphase cells of human and murine tumors. Dm are unique cytogenetic structures since their numbers per cell show wide variation. At cell division, dm are retained despite the lack of centromeres. In squash preparations, dm show clustering often in association with chromosomes. Human carcinoma cell line SW613-S18 was found to have large numbers of dm and biological characteristics favorable for mitotic synchronization and chromosome isolation experiments.^ S18 cells were synchronized to mitosis with metabolic and mitotic blocking compounds. Mitotic cells were lysed to release chromosomes and dm from the mitotic spindle and the resulting suspensions were fractionated to enrich for dm. The DNA in enriched fractions was characterized. The reassociation kinetics of dm-DNA driven with placental human DNA was similar to the reassociation curve of labeled placental DNA under similar conditions. In situ hybridization of dm-DNA to tumor and normal metaphase cells showed grain localization over the entire karyotype. Dm-DNA was shown by pulse chase DNA replication experiments to replicate during early and mid S-phase of the cell cycle, but not in late S-phase. In addition, BrdUrd incorporation studies showed that dm-DNA replicates only once during the S-phase. Premature chromosome condensation studies suggest the basis of numerical heterogeneity of dm is nondisjunction, not anomalous or unscheduled DNA replication.^ These data and previous cytochemical banding studies of dm in SW613-S18 indicate that dm-DNA is chromosomal in origin. No evidence of gene amplification was found in the DNA reassociation data. It is likely that dm-DNA represents the pale-staining G-band regions of the human karyotype in this cell line. ^
Resumo:
Carboxypeptidase N (CPN) is a plasma zinc metalloprotease, which consists of two enzymatically active small subunits and two large subunits that protect the protein from degradation. CPN cleaves carboxy-terminal arginines and lysines from peptides found in the bloodstream such as complement anaphylatoxins, kinins, and creatine kinase MM. In this study, the mouse CPN small subunit (CPN1) coding region, gene structure, and chromosomal location were characterized and the expression of CPN1 was investigated in mouse embryos at different stages of development. The CPN1 gene, which was approximately 29 kb in length, contained nine exons and localized to mouse chromosome 19D2. The fifth and sixth exons of CPN1 encoded the amino acids necessary for substrate binding and catalytic activity. CPN1 RNA was expressed predominately in adult liver and contained a 1371 bp open reading frame encoding 457 amino acids. In the mouse embryo, CPN1 RNA was observed at 8.5 days post coitus (dpc), while its protein was detected at 10.5 dpc. In situ hybridization of the fetal liver detected CPN1 RNA in erythroid progenitor cells at 10.5, 13.5, and 16.5 dpc and in hepatocytes at 16.5 dpc. This was compared to the expression of the complement component C3, the parent molecule of complement anaphylatoxin C3a. Consistently throughout the experiments, CPN1 message and protein preceded the expression of C3. To obtain a better understanding of the biological significance of CPN1 in vivo, studies were initiated to produce a genetically engineered mouse in which the CPN1 gene was ablated. To facilitate this project a targeting vector was constructed by removing the functionally important fifth and sixth exons of the CPN1 gene. Collectively, these studies have: (1) provided important detailed information regarding the structure and organization of the murine CPN1 gene, (2) yielded insights into the developmental expression of mouse CPN1 in relationship to C3 expression, and (3) set the stage for the generation of a CPN1 “knock-out” mouse, which can be used to determine the biological significance of CPN1 in both normal and diseased conditions. ^