2 resultados para chemical and thermal stability
em DigitalCommons@The Texas Medical Center
Resumo:
Urines from patients administered mutagenic antineoplastic drugs were significantly mutagenic in the Ames assay, and hence may pose a genotoxic hazard to hospital personnel or family members caring for the patient. The urines were tested for mutagenicity in several different strains of Salmonella typhimurium that were uvr positive or negative (TA98, TA100, TA102, UTH8413, UTH8414). The urines were fractionated by high pressure liquid chromatography (HPLC) and the fractions assayed for mutagenicity in the strains in which the whole urine was mutagenic. Only fractions of urines containing the parent compound (cisplatin, doxorubicin, or mitomycin) were mutagenic; no other fraction showed significant mutagenicity. However, urine containing cyclophosphamide had two fractions that were mutagenic. One fraction, the fraction containing cyclophosphamide, required metabolic activation for mutagenicity. The other fraction did not require activation for mutagenicity.^ The chemical and mutagenic stability of these urines at room temperature was assayed over a 14 day period. The parent compound degraded within the first seven days, but the urines remained mutagenic. Cis-platinum was chemically stable in the urine; however, the urine decreased in mutagenicity. The decrease was probably the result of stable ligands binding to the platinum.^ Inactivation methods were developed to reduce the genotoxic hazard. Urine containing cisplatin was inactivated by complexing the cisplatin with diethyldithiocarbamate (DDTC). Oxidation with NaOCl of urines containing mitomycin and doxorubicin (sodium thiosulfate must be added to the doxorubicin urine) results in mutagenic inactivation. Inactivation of urine containing cyclophosphamide requires oxidation with alkaline potassium permaganate and trapping of active degradation products with sodium thiosulfate. Urines containing these drugs can be inactivated, but not always by the same method that inactivates the drug alone in solution. Therefore, in the future development of inactivation methods, both chemical and mutagenic assays are necessary to determine effectiveness. Methods of inactivation of mutagenic excreta developed in this study are both effective and practical. ^
Resumo:
The essential p21-activated kinase (PAK), Shk1, is a critical component of a Ras/Cdc42/PAK complex required for cell viability, normal cell polarity, proper regulation of cytoskeletal dynamics, and sexual differentiation in the fission yeast, Schizosaccharomyces pombe. While cellular functions of PAKs have been described in eukaryotes from yeasts to mammals, the molecular mechanisms of PAK regulation and function are poorly understood. This study has characterized a novel Shk1 inhibitor, Skb15, and, in addition, identified the cell polarity regulator, Tea1, as a potential biological substrate of Shk1 in S. pombe. Skb15 is a highly conserved WD repeat protein that was discovered from a two-hybrid screen for proteins that interact with the catalytic domain of Shk1. Molecular data indicate that Skb15 negatively regulates Shk1 kinase activity in S. pombe cells. A null mutation in the skb15 gene is lethal and results in deregulation of actin polymerization and localization, microtubule biogenesis, and the cytokinetic machinery, as well as a substantial uncoupling of these processes from the cell cycle. Loss of Skb15 function is suppressed by partial loss of Shk1, demonstrating that negative regulation of Shk1 by Skb15 is required for proper execution of cytoskeletal remodeling and cytokinetic functions. A mouse homolog of Skb15 can substitute for its counterpart in fission yeast, demonstrating that Skb15 protein function has been substantially conserved through evolution. ^ Our laboratory has recently demonstrated that Shk1, in addition to regulating actin cytoskeletal organization, is required for proper regulation of microtubule dynamics in S. pombe cells. The Shk1 protein localizes to interphase and mitotic microtubules, the septum-forming region, and cell ends. This pattern of localization overlaps with that of the cell polarity regulator, Tea1, in S. pombe cells. The tea1 gene was identified by Paul Nurse's laboratory from a screen for genes involved in the control of cell morphogenesis in S. pombe. In contrast to wild type S. pombe cells, which are rod shaped, tea1 null cells are often bent and/or branched in shape. The Tea1 protein localizes to the cell ends, like Shk1, and the growing tips of interphase microtubules. Thus, experiments were performed to investigate whether Tea1 interacts with Shk1. The tea1 null mutation strongly suppresses the loss of function of Skb15, an essential inhibitor of Shk1 function. All defects associated with the skb15 mutation, including defects in F-actin organization, septation, spindle elongation, and chromosome segregation, are suppressed by tea1Δ, suggesting that Tea1 may function in these diverse processes. Consistent with a role for Tea1 in cytokinesis, tea1Δ cells have a modest cell separation defect that is greatly exacerbated by a shk1 mutation and, like Shk1, Tea1 localizes to the septation site. Molecular analyses showed that Tea1 phosphorylation is significantly dependent on Shk1 function in vivo and that bacterially expressed Tea1 protein is directly phosphorylated by recombinant Shk1 kinase in vitro. Taken together, these results identify Tea1 as a potential biological substrate of Shk1 in S. pombe. ^ In summary, this study provides new insights into a conserved regulatory mechanism for PAKs, and also begins to uncover the molecular mechanisms by which the Ras/Cdc42/PAK complex regulates the microtubule and actin cytoskeletons and cell growth polarization in fission yeast. ^