3 resultados para ceratotoxin like peptide

em DigitalCommons@The Texas Medical Center


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Obesity and related chronic diseases represent a tremendous public health burden among Mexican Americans, a young and rapidly-expanding population. This study investigated the impact of variation within eight candidate obesity genes, which include leptin (LEP), leptin receptor (LEPR), neuropeptide Y (NPY), NPYY1 receptor (NPYY1), glucagon-like peptide-1 (GLP-1), GLP-1 receptor (GLP1R), beta-3 adrenergic receptor (β3AR), and uncoupling protein (UCP1), on variation in human obesity status and/or quantitative traits related to obesity in Mexican Americans from Starr County, Texas. The Trp64Arg polymorphism within β3AR was typed in 820 random individuals and 240 pedigrees (N = 2,044). The Arg allele frequency was significantly greater in obese versus non-obese individuals (0.20 versus 0. 15, respectively). In addition, within the random sample, the Arg allele was associated with significantly greater body weight (p = 0.031) and body mass index (BMI, p = 0.008) than the Trp allele. In the family sample, the Trp64Arg locus was also linked to percent fat (p = 0.045) but not to body weight or BMI. No linkage between obesity, diabetes, hypertension, or gallbladder disease and the Trp64Arg mutation was observed in families using affected sib pair linkage analysis or the transmission disequilibrium test. Microsatellite markers proximate to the remaining seven genes were typed in 302 individuals from 59 families. Sib pair linkage analysis provided evidence for linkage between obesity and NPY within affected sibling pairs (p = 0.042; n = 170 pairs). NPY was also linked to weight (p = 0.020), abdominal circumference (p = 0.031), hip circumference (p = 0.012), DBP (p ≤ 0.005), and a composite measure of body mass/fat (p ≤ 0.048) in all sibling pairs (n = 545 pairs). Additionally, LEP was linked to waist/hip ratio (p ≤ 0.009), total cholesterol (p ≤ 0.030), and HDL cholesterol (p ≤ 0.026), and LEPR was linked to fasting blood glucose (p ≤ 0.018) and DBP (p ≤ 0.003). Subsequent to the linkage analyses, the NPY gene was sequenced and eight variant sites identified. Two variant sites (-880I/D and 69I/D) were typed in a random sample of 914 individuals. The 880I/D variant was significantly associated with waist/hip ratio (p = 0.035) in the entire sample (N = 914) and with BMI (p = 0. 031), abdominal circumference (p = 0.044), and waist/hip ratio (p = 0.041) in a non-obese subsample (BW < 30 kg/m2, n = 594). The 69I/D variant was a rare mutation observed in only one pedigree and was not associated with obesity or body size/mass within this pedigree. Results of this study indicate that variation at or near β3AR, LEP, LEPR, and NPY may exert effects which increase obesity susceptibility and influence obesity-related measures in this population. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous studies in our laboratory have indicated that heparan sulfate proteoglycans (HSPGs) play an important role in murine embryo implantation. To investigate the potential function of HSPGs in human implantation, two human cell lines (RL95 and JAR) were selected to model uterine epithelium and embryonal trophectoderm, respectively. A heterologous cell-cell adhesion assay showed that initial binding between JAR and RL95 cells is mediated by cell surface glycosaminoglycans (GAG) with heparin-like properties, i.e., heparan sulfate and dermatan sulfate. Furthermore, a single class of highly specific, protease-sensitive heparin/heparan sulfate binding sites exist on the surface of RL95 cells. Three heparin binding, tryptic peptide fragments were isolated from RL95 cell surfaces and their amino termini partially sequenced. Reverse transcription-polymerase chain reaction (RT-PCR) generated 1 to 4 PCR products per tryptic peptide. Northern blot analysis of RNA from RL95 cells using one of these RT-PCR products identified a 1.2 Kb mRNA species (p24). The amino acid sequence predicted from the cDNA sequence contains a putative heparin-binding domain. A synthetic peptide representing this putative heparin binding domain was used to generate a rabbit polyclonal antibody (anti-p24). Indirect immunofluorescence studies on RL95 and JAR cells as well as binding studies of anti-p24 to intact RL95 cells demonstrate that p24 is distributed on the cell surface. Western blots of RL95 membrane preparations identify a 24 kDa protein (p24) highly enriched in the 100,000 g pellet plasma membrane-enriched fraction. p24 eluted from membranes with 0.8 M NaCl, but not 0.6 M NaCl, suggesting that it is a peripheral membrane component. Solubilized p24 binds heparin by heparin affinity chromatography and $\sp{125}$I-heparin binding assays. Furthermore, indirect immunofluorescence studies indicate that cytotrophoblast of floating and attached villi of the human fetal-maternal interface are recognized by anti-p24. The study also indicates that the HSPG, perlecan, accumulates where chorionic villi are attached to uterine stroma and where p24-expressing cytotrophoblast penetrate the stroma. Collectively, these data indicate that p24 is a cell surface membrane-associated heparin/heparan sulfate binding protein found in cytotrophoblast, but not many other cell types of the fetal-maternal interface. Furthermore, p24 colocalizes with HSPGs in regions of cytotrophoblast invasion. These observations are consistent with a role for HSPGs and HSPG binding proteins in human trophoblast-uterine cell interactions. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gastrin-releasing peptide (GRP) and other bombesin-like peptides stimulate hormone secretion and cell proliferation by binding to specific G-protein-coupled receptors. Three studies were performed to identify potential mechanisms involved in GRP/bombesin receptor regulation.^ Although bombesin receptors are localized throughout the gastrointestinal tract, few gastrointestinal cell lines are available to study bombesin action. In the first study, the binding and function of bombesin receptors in the human HuTu-80 duodenal cancer cell line were characterized. ($\sp{125}$I-Tyr$\sp4$) bombesin bound with high affinity to a GRP-preferring receptor. Bombesin treatment increased IP$\sb3$ production, but had no effect on cell proliferation. Similar processing of ($\sp{125}$I-Tyr$\sp4$) bombesin and of GRP-receptors was observed in HuTu-80 cells and Swiss 3T3 fibroblasts, a cell line which mitogenically responds to bombesin. Therefore, the lack of a bombesin mitogenic effect in HuTu-80 cells is not due to unusual processing of ($\sp{125}$I-Tyr$\sp4$) bombesin or rapid GRP-receptor down-regulation.^ In the second study, a bombesin antagonist was developed to study the processing and regulatory events after antagonist binding. As previously shown, receptor bound agonist, ($\sp{125}$I-Tyr$\sp4$) bombesin, was rapidly internalized and degraded in chloroquine-sensitive compartments. Interestingly, receptor-bound antagonist, ($\sp{125}$I-D-Tyr$\sp6$) bombesin(6-13)PA was not internalized, but degraded at the cell-surface. In contrast to bombesin, (D-Tyr$\sp6$) bombesin(6-13)PA treatment did not cause receptor internalization. Together these results demonstrate that receptor regulation and receptor-mediated processing of antagonist is different from that of agonist.^ Bombesin receptors undergo acute desensitization. By analogy to other G-protein-coupled receptors, a potential desensitization mechanism may involve receptor phosphorylation. In the final study, $\sp{32}$P-labelled Swiss 3T3 fibroblasts and CHO-mBR1 cells were treated with bombesin and the GRP-receptor was immunoprecipitated. In both cell lines, bombesin treatment markedly stimulated GRP-receptor phosphorylation. Furthermore, bombesin-stimulated GRP-receptor phosphorylation occurred within the same time period as bombesin-stimulated desensitization, demonstrating that these two processes are correlated.^ In conclusion, these studies of GRP-receptor regulation further our understanding of bombesin action and provide insight into G-protein-coupled receptor regulation in general. ^