8 resultados para cat enteric cycle of T. gondii
em DigitalCommons@The Texas Medical Center
Resumo:
Child abuse and neglect are universal risk factors for delinquency, violence and aggression; this phenomenon is known as the cycle of violence. Despite a wide body of research demonstrating this phenomenon, the processes which mediate this relationship remain largely unknown. One potentially relevant result of abuse and neglect may be disruptions in the development of the body’s stress response, specifically the function of the Hypothalamic-Pituitary-Adrenal (HPA) axis. The HPA-axis, and its end-product, cortisol, may play a role in regulating aggressive behavior, but this function may be disrupted following abuse and neglect. Another risk factor for aggression, psychopathy, may mediate the cycle of violence or independently contribute to aggressive behavior. This study examined the relationship between child abuse and neglect, HPA-axis function, psychopathy and aggression. History of abuse was measured using a self-report questionnaire, the Childhood Trauma Questionnaire. Using a within-subject, placebo-controlled, counter-balanced dosing design, 67 adults were given an acute dose of 20mg cortisol as a challenge to the HPA-axis. Following dosing, measures of cortisol response were obtained through saliva samples, and state-aggressive behavior was measured by a laboratory task, the Point-Subtraction Aggression Paradigm (PSAP). Basal measures of cortisol were obtained prior to dosing. Psychopathy and a trait-measure of aggression were assessed through self-report questionnaires. PSAP data and trait-aggression scores were normalized and summed for an overall aggression score. Linear regression analyses indicated that a history of abuse and neglect robustly predicted aggression, supporting the cycle of violence hypothesis. Further, abuse and neglect predicted a diminished HPA-axis response to the cortisol challenge. Although a diminished HPA-axis response significantly predicted increased aggression, mediation analysis revealed that HPA-axis reactivity did not mediate a significant portion of the effect of abuse and neglect on aggression. However, HPA-axis reactivity did mediate part of the effect, indicating that HPA-axis function may be a factor in the cycle of violence. Psychopathy robustly predicted increased aggression. Although the results indicate that cortisol, psychopathy and HPA-axis function are involved in the cycle of violence, further research is required to better understand the complex interaction of these factors.
Resumo:
Viral invasion of the central nervous system (CNS) and development of neurological symptoms is a characteristic of many retroviruses. The mechanism by which retrovirus infection causes neurological dysfunction has yet to be fully elucidated. Given the complexity of the retrovirus-mediated neuropathogenesis, studies using small animal models are extremely valuable. Our laboratory has used a mutant moloney murine leukemia retrovirus, ts1-mediated neurodegneration. We hypothesize that astrocytes play an important role in ts1-induced neurodegeneration since they are retroviral reservoirs and supporting cells for neurons. It has been shown that ts1 is able to infect astrocytes in vivo and in vitro. Astrocytes, the dominant cell population in the CNS, extend their end feet to endothelial cells and neuronal synapse to provide neuronal support. Signs of oxidative stress in the ts1-infected CNS have been well-documented from previous studies. After viral infection, retroviral DNA is generated from its RNA genome and integrated into the host genome. In this study, we identified the life cycle of ts1 in the infected astrocytes. During the infection, we observed reactive oxygen species (ROS) upregulations: one at low levels during the early infection phase and another at high levels during the late infection phase. Initially we hypothesized that p53 might play an important role in ts1-mediated astrocytic cell death. Subsequently, we found that p53 is unlikely to be involved in the ts1-mediated astrocytic cell death. Instead, p53 phosphorylation was increased by the early ROS upregulation via ATM, the protein encoded by the ataxia-telangiectasia (A-T) mutated gene. The early upregulation of p53 delayed viral gene expression by suppressing expression of the catalytic subunit of NADPH oxidase (NOX). We further demonstrated that the ROS upregulation induced by NOX activation plays an important role in establishing retroviral genome into the host. Inhibition of NOX decreased viral replication and delayed the onset of pathological symptoms in ts1-infected mice. These observations lead us to conclude that suppression of NOX not only prevents the establishment of the retrovirus but also decreases oxidative stress in the CNS. This study provides us with new perspectives on the retrovirus-host cell interaction and sheds light on retrovirus-induced neurodegeneration as a result of the astrocyte-neuron interaction.
Resumo:
The present study examined cellular mechanisms involved in the production and secretion of human (gamma)IFN. The hypothesis of this investigation was that (gamma)IFN is an export glycoprotein whose synthesis in human T lymphocytes is dependent on membrane stimulation, polypeptide synthesis in the rough endoplasmic reticulum, packaging in the Golgi complex, and release from the cell by exocytosis.^ The model system for this examination utilized T lymphocytes from normal donors and patients with chronic lymphocytic leukemia (CLL) induced in vitro with the tumor promoter, phorbol 12-myristate 13-acetate (PMA) and the lectin, phytohemagglutinin (PHA) to produce (gamma)IFN. This study reconfirmed the ability of PMA and PHA to synergistically induce (gamma)IFN production in normal T lymphocytes, as measured by viral inhibition assays and radio-immunoassays for (gamma)IFN. The leukemic T cells were demonstrated to produce (gamma)IFN in response to treatment with PHA. PMA treatment also induced (gamma)IFN production in the leukemic T cells, which was much greater than that observed in similarly treated normal T cells. In these same cells, however, combined treatment of the agents was shown to be ineffective at inducing (gamma)IFN production beyond the levels stimulated by the individual agents. In addition, the present study reiterated the synergistic effect of PMA/PHA on the stimulation of growth kinetics in normal T cells. The cell cycle of the leukemic T cells was also responsive to treatment with the agents, particularly with PMA treatment. A number of morphological alterations were attributed to PMA treatment including the acquisition of an elongated configuration, nuclear folds, and large cytoplasmic vacuoles. Many of the effects were observed to be reversible with dilution of the agents, and reversion to this state occurred more rapidly in the leukemic T cells. Most importantly, utilization of a thin section immuno-colloidal gold labelling technique for electron microscopy provided, for the first time, direct evidence of the cellular mechanism of (gamma)IFN production and secretion. The results of this latter study support the idea that (gamma)IFN is produced in the rough endoplasmic reticulum, transferred to the Golgi complex for accumulation and packaging, and released from the T cells by exocytosis. ^
Resumo:
The hypothesis tested was that rapid rejection of Trichinella spiralis infective larvae from immunized rats following a challenge infection is associated with a local anaphylactic reaction, and this response should be reflected in altered small intestinal motility. The objective was to determine if altered gut smooth muscle function accompanies worm rejection based on the assumption that anaphylaxis in vivo could be detected by changes in intestinal smooth muscle contractile activity (ie. an equivalent of the Schultz-Dale reaction or in vitro anaphylaxis). The aims were to (1) characterize motility changes by monitoring intestinal myoelectric activity in conscious rats during the enteric phase of T. spiralis infection in immunized hosts, (2) detect the onset and magnitude of myoelectric changes caused by challenge infection in immunized rats, (3) determine the parasite stimulus causing changes, and (4) determine the specificity of host response to stimulation. Electrical slow wave frequency, spiking activity, normal interdigestive migrating myoelectric complexes and abnormal migrating action potential complexes were measured. Changes in myoelectric parameters induced by larvae inoculated into the duodenum of immune hosts differed from those associated with primary infection with respect to time of onset, magnitude and duration. Myoelectric changes elicited by live larvae could not be reproduced by inoculation of hosts with dead larvae, larval excretory-secretory products, or by challenge with a heterologous parasite, Eimeria nieschulzi. These results indicate that (1) local anaphylaxis is a component of the initial response to T. spiralis in immune hosts, since the rapid onset of altered smooth muscle function parallels in time the expression of rapid rejection of infective larvae, and (2) an active mucosal penetration attempt by the worm is necessary to elicit this host response. These findings provide evidence that worm rejection is a consequence of, or sequel to, an immediate hypersensitivity reaction elicited when parasites attempt to invade the gut mucosa of immunized hosts. ^
Resumo:
The occurrence of group G streptococci in cats and evaluation of the recovered organisms as potential human pathogens was investigated. Throat swabs were obtained from 89 cats (47 males and 42 females) and vaginal swabs from 39 female cats. Eighty-three of the examined cats were housed in individual cages at a University Animal Care Facility. Six cats, 2 mature males, 2 mature females and 2 young females were family pets in a rural area. Beta-hemolytic streptococci were recovered from 33 (37%) of the 89 cat throats cultured, and 27 (30.3%) were identified as group G. More males (34%) than females (24%) had throat cultures positive for group G. From the 39 vaginal cultures examined, 24 (61.5%) contained beta-hemolytic streptococci and 23 (58.9%) were identified as group G streptococci. Streptococci were not recovered from the vaginal cultures of the 5 females under 6 months of age.^ Thirty one group G streptococci isolated from cats were compared with 37 isolates of group G obtained from humans (health status or site of origin unknown). More group G cat isolates (81%) produced deoxyribonuclease (DNase) than did the human isolates (36%). The proportion of cat throat and vaginal isolates producing DNase was the same. Production of nicotinamide adenine dinucleotide glycohydrolase (NADase) by group G isolates of human origin was 70%, cat throat isolates 53% and cat vaginal isolates 37%. The Serum Opacity Factor was present in 73% of the cat throat isolates of group G, 43.7% of the cat vaginal isolates and 58.6% of the human isolates. Possession of an anti-phagocytic factor (M protein like substance) demonstrated by the ability to multiply in fresh human blood was greater in the group G from cat throats (46.7%) than from cat vagina (37.5%) or from the human isolates (13.5%). Many of the biochemical characteristics of the group G streptococci of cat origin were more similar to the biochemical characteristics of group A streptococci, than to the characteristics of group G of human origin. The group G streptococci, found in a large number of cats, could be potential human pathogens, as their physiological and biological characteristics are very similar to those of group A, a known human pathogen. ^