11 resultados para cardioplegic agent

em DigitalCommons@The Texas Medical Center


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hypothesis and Objectives PEGylated liposomal blood pool contrast agents maintain contrast enhancement over several hours. This study aimed to evaluate (long-term) imaging of pulmonary arteries, comparing conventional iodinated contrast with a liposomal blood pool contrast agent. Secondly, visualization of the (real-time) therapeutic effects of tissue-Plasminogen Activator (t-PA) on pulmonary embolism (PE) was attempted. Materials and Methods Six rabbits (approximate 4 kg weight) had autologous blood clots injected through the superior vena cava. Imaging was performed using conventional contrast (iohexol, 350 mg I/ml, GE HealthCare, Princeton, NJ) at a dose of 1400 mgI per animal and after wash-out, animals were imaged using an iodinated liposomal blood pool agent (88 mg I/mL, dose 900 mgI/animal). Subsequently, five animals were injected with 2mg t-PA and imaging continued for up to 4 ½ hours. Results Both contrast agents identified PE in the pulmonary trunk and main pulmonary arteries in all rabbits. Liposomal blood pool agent yielded uniform enhancement, which remained relatively constant throughout the experiments. Conventional agents exhibited non uniform opacification and rapid clearance post injection. Three out of six rabbits had mistimed bolus injections, requiring repeat injections. Following t-PA, Pulmonary embolus volume (central to segmental) decreased in four of five treated rabbits (range 10–57%, mean 42%). One animal showed no response to t-PA. Conclusions Liposomal blood pool agents effectively identified acute PE without need for re-injection. PE resolution following t-PA was quantifiable over several hours. Blood pool agents offer the potential for repeated imaging procedures without need for repeated (nephrotoxic) contrast injections

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High resolution, vascular magnetic resonance imaging of the spine region in small animals poses several challenges. The small anatomical features, extravascular diffusion, and the low signal-to-noise ratio limit the use of conventional contrast agents. We hypothesize that a long circulating, intravascular liposomal-encapsulated MR contrast agent (liposomal-Gd) would facilitate visualization of small anatomical features of the perispinal vasculature not visible with conventional contrast agent (Gd-DTPA).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: High-resolution, vascular MR imaging of the spine region in small animals poses several challenges. The small anatomic features, extravascular diffusion, and low signal-to-noise ratio limit the use of conventional contrast agents. We hypothesize that a long-circulating, intravascular liposomal-encapsulated MR contrast agent (liposomal-Gd) would facilitate visualization of small anatomic features of the perispinal vasculature not visible with conventional contrast agent (gadolinium-diethylene-triaminepentaacetic acid [Gd-DTPA]). METHODS: In this study, high-resolution MR angiography of the spine region was performed in a rat model using a liposomal-Gd, which is known to remain within the blood pool for an extended period. The imaging characteristics of this agent were compared with those of a conventional contrast agent, Gd-DTPA. RESULTS: The liposomal-Gd enabled acquisition of high quality angiograms with high signal-to-noise ratio. Several important vascular features, such as radicular arteries, posterior spinal vein, and epidural venous plexus were visualized in the angiograms obtained with the liposomal agent. The MR angiograms obtained with conventional Gd-DTPA did not demonstrate these vessels clearly because of marked extravascular soft-tissue enhancement that obscured the vasculature. CONCLUSIONS: This study demonstrates the potential benefit of long-circulating liposomal-Gd as a MR contrast agent for high-resolution vascular imaging applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RATIONALE AND OBJECTIVES: Polyethylene glycol-coated liposomal blood pool contrast agents maintain contrast enhancement over several hours. This study aimed to evaluate (long-term) imaging of pulmonary arteries, comparing conventional iodinated contrast with a liposomal blood pool contrast agent. Also, visualization of the (real-time) therapeutic effects of tissue plasminogen activator (t-PA) on pulmonary embolism (PE) was attempted. MATERIALS AND METHODS: Six rabbits (weight approximately 4 kg) had autologous blood clots injected through the superior vena cava. Imaging was performed using conventional contrast (iohexol, 350 mg I/ml; GE HealthCare, Princeton, NJ) at a dose of 1400 mg I per animal, and after wash-out, animals were imaged using an iodinated liposomal blood pool agent (88 mg I/mL, dose 900 mg I/animal). Subsequently, five animals were injected with 2 mg of t-PA and imaging continued for up to 4(1/2) hours. RESULTS: Both contrast agents identified PE in the pulmonary trunk and main pulmonary arteries in all rabbits. Liposomal blood pool agent yielded uniform enhancement, which remained relatively constant throughout the experiments. Conventional agents exhibited nonuniform opacification and rapid clearance postinjection. Three of six rabbits had mistimed bolus injections, requiring repeat injections. Following t-PA, pulmonary embolus volume (central to segmental) decreased in four of five treated rabbits (range 10-57%, mean 42%). One animal showed no response to t-PA. CONCLUSIONS: Liposomal blood pool agents effectively identified acute PE without need for reinjection. PE resolution following t-PA was quantifiable over several hours. Blood pool agents offer the potential for repeated imaging procedures without need for repeated (nephrotoxic) contrast injections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultraviolet B (UVB) radiation, in addition to being carcinogenic, is also immunosuppressive. Immunologically, UVB induces suppression locally, at the site of irradiation, or systemically, by inducing the production of a variety of immunosuppressive cytokines. Systemic effects include suppression of delayed-type hypersensitivity (DTH) responses to a variety of antigens (e.g. haptens, proteins, bacterial antigens, or alloantigens). One of the principal mediators of UV-induced immune suppression is the T helper-2 (Th2) cytokine interleukin-10 (IL-10); this suggests that UV irradiation induces suppression by shifting the immune response from a Th1 (cellular) to a Th2 (humoral) response. These "opposing" T helper responses are usually mutually exclusive, and polarized Th1 or Th2 responses may lead to either protection from infection or increased susceptibility to disease, depending on the infectious agent and the route of infection.^ This study examines the effects of UVB irradiation on cellular and humoral responses to Borrelia burgdorferi (Bb), the causative agent of Lyme disease (LD) in both immunization and infectious disease models; in addition, it examines the role of T cells in protection from and pathology of Bb infection. Particular emphasis is placed on the Bb-specific antibody responses following irradiation since UVB effects on humoral immunity are not fully understood. Mice were irradiated with a single dose of UV and then immunized (in complete Freund's adjuvant) or infected with Bb (intradermally at the base of the tail) in order to examine both DTH and antibody responses in both systems. UVB suppressed the Th1-associated antibodies IgG2a and IgG2b in both systems, as well as the DTH response to Bb in a dose dependent manner. Injection of anti-IL-10 antibody into UV-irradiated mice within 24 h after UV exposure restored the DTH response, as well as the Th1 antibody (IgG2a and IgG2b) response. In addition, injecting recombinant IL-10 mimicked some of the effects of UV radiation.^ Bb-specific Th1 T cell lines (BAT2.1-2.3) were generated to examine the role of T cells in Lyme borreliosis. All lines were CD4$\sp+,$ $\alpha\beta\sp+$ and proliferated specifically in response to Bb. The BAT2 cell lines not only conferred a DTH response to naive C3H recipients, but reduced the number of organisms recovered from the blood and tissues of mice infected with Bb. Furthermore, BAT2 cell lines protected mice from Bb-induced periarthritis. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BDF(,1) mice received a single intravenous injection of glucan, a potent immunomodulating agent, and at various times thereafter the proliferation of pluripotent (CFU-S), committed granulocyte-macrophage (GM-CFC) and committed B-lymphocyte (BL-CFC) hemopoietic stem cells was measured in the bo

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The DNA breakage effect of the anticancer agent 3,6-diaziridinyl-2,5-bis(carboethoxyamino)-1,4-benzoquinone (AZQ, NSC-182986) on bacteriophage PM2 DNA was investigated using agarose gel electrophoresis. AZQ caused both single-stranded and double-stranded breaks after reduction with NaBH(,4), but it was not active in the native state. At 120 (mu)M, it degraded 50% of the closed circular form I DNA into 40% form II DNA (single-stranded break) and 10% form III DNA (double-stranded break). It produced a dose-response breakage between 1 (mu)M and 320 (mu)M. The DNA breakage exhibited a marked pH dependency. At 320 (mu)M, AZQ degraded 80% and 60% of form I DNA at pH 4 and 10 respectively, but none between pH 6 to 8. The DNA breakage at physiologic pH was greatly enhanced when 10 (mu)M cupric sulfate was included in the incubation mixture. The DNA strand scission was inhibited by catalase, glutathione, KI, histidine, Tiron, and DABCO. These results suggest that the DNA breakage may be caused by active oxygen metabolites including hydroxyl free radical. The bifunctional cross-linking activity of reduced AZQ on isolated calf thymus DNA was investigated by ethidium fluorescence assay. The cross-linking activity exhibited a similar pH dependency; highest in acidic and alkaline pH, inactive under neutral conditions. Using the alkaline elution method, we found that AZQ induced DNA single-stranded breaks in Chinese hamster ovary cells treated with 50 (mu)M of AZQ for 2 hr. The single-stranded break frequencies in rad equivalents were 17 with 50 (mu)M and 140 with 100 (mu)M of AZQ. In comparison, DNA cross-links appeared in cells treated with only 1 to 25 (mu)M of AZQ for 2 hr. The cross-linking frequencies in rad equivalents were 39 and 90 for 1 and 5 (mu)M of AZQ, respectively. Both DNA-DNA and DNa-protein cross-links were induced by AZQ in CHO cells as revealed by the proteinas K digestion assay. DNA cross-links increased within the first 4 hr of incubation in drug-free medium and slightly decreased by 12 hr, and most of the cross-links disappeared after cells were allowed to recovered for 24 hr.^ By electrochemical analysis, we found that AZQ was more readily reduced at acidic pH. However, incubation of AZQ with NaBH(,4) at pH 7.8 or 10, but not at 4, produced superoxide anion. The opening of the aziridinyl rings of AZQ at pH 4 was faster in the presence of NaBH(,4) than in its absence; no ring-opening was detected at pH 7.8 regardless of the inclusion of NaBH(,4). . . . (Author's abstract exceeds stipulated maximum length. Discontinued here with permission of author.) UMI ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proviral integration site for Moloney murine leukemia virus (Pim) kinases are Ser/Thr/Tyr kinases. They modulate B-cell development but become oncoproteins and promote cancer development once overexpressed. Containing three isoforms, Pim-1, -2 and -3 are known to phosphorylate various substrates that regulate transcription, translation, cell cycle, and survival pathways in both hematological and solid tumors. Mantle cell lymphoma (MCL) is an aggressive B-cell lymphoma. Elevated Pim kinase levels are common in MCL, and it negatively correlates with patient outcome. SGI-1776 is a small molecule inhibitor selective for Pim-1/-3. We hypothesize that SGI-1776 treatment in MCL will inhibit Pim kinase function, and inhibition of downstream substrates phosphorylation will disrupt transcriptional, translational, and cell cycle processes while promoting apoptosis. SGI-1776 treatment induced moderate to high levels of apoptosis in four MCL cell lines (JeKo-1, Mino, SP-53 and Granta-519) and peripheral blood mononuclear cells (PBMCs) from MCL patients. Phosphorylation of transcription and translation regulators, c-Myc and 4E-BP1 declined in both model systems. Additionally, levels of short-lived Mcl-1 mRNA and protein also decreased and correlated with decline of global RNA synthesis. Collectively, our investigations highlight Pim kinases as viable drug targets in MCL and emphasize their roles in transcriptional and translational regulation. We further investigated a combination strategy using SGI-1776 with bendamustine, an FDA-approved DNA-damaging alkylating agent for treating non-Hodgkin’s lymphoma. We hypothesized this combination will enhance SGI-1776-induced transcription and translation inhibition, while promoting bendamustine-triggered DNA damage and inducing additive to synergistic cytotoxicity in B-cell lymphoma. Bendamustine alone resulted in moderate levels of apoptosis induction in MCL cell lines (JeKo-1 and Mino), and in MCL and splenic marginal zone lymphoma (a type of B-cell lymphoma) primary cells. An additive effect in cell killing was observed when combined with SGI-1776. Expectedly, SGI-1776 effectively decreased global RNA and protein synthesis levels, while bendamustine significantly inhibited DNA synthesis and generated DNA damage response. In combination, intensified inhibitory effects in DNA, RNA and protein syntheses were observed. Together, these data suggested feasibility of using Pim kinase inhibitor in combination with chemotherapeutic agents such as bendamustine in B-cell lymphoma, and provided foundation of their mechanism of actions in lymphoma cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dynamic contrast agent-enhanced magnetic resonance imaging (DCE MRI) data, when analyzed with the appropriate pharmacokinetic models, have been shown to provide quantitative estimates of microvascular parameters important in characterizing the angiogenic activity of malignant tissue. These parameters consist of the whole blood volume per unit volume of tissue, v b, transport constant from the plasma to the extravascular, extracellular space (EES), k1 and the transport constant from the EES to the plasma, k2. Parameters vb and k1 are expected to correlate with microvascular density (MVD) and vascular permeability, respectively, which have been suggested to serve as surrogate markers for angiogenesis. In addition to being a marker for angiogenesis, vascular permeability is also useful in estimating tumor penetration potential of chemotherapeutic agents. ^ Histological measurements of the intratumoral microvascular environment are limited by their invasiveness and susceptibility to sampling errors. Also, MVD and vascular permeability, while useful for characterizing tumors at a single time point, have shown less utility in longitudinal studies, particularly when used to monitor the efficacy of antiangiogenic and traditional chemotherapeutic agents. These limitations led to a search for a non-invasive means of characterizing the microvascular environment of an entire tumor. ^ The overall goal of this project was to determine the utility of DCE MRI for monitoring the effect of antiangiogenic agents. Further applications of a validated DCE MRI technique include in vivo measurements of tumor microvascular characteristics to aid in determining prognosis at presentation and in estimating drug penetration. DCE MRI data were generated using single- and dual-tracer pharmacokinetic models with different molecular-weight contrast agents. The resulting pharmacokinetic parameters were compared to immunohistochemical measurements. The model and contrast agent combination yielding the best correlation between the pharmacokinetic parameters and histological measures was further evaluated in a longitudinal study to evaluate the efficacy of DCE MRI in monitoring the intratumoral microvascular environment following antiangiogenic treatment. ^