9 resultados para c-reactive protein
em DigitalCommons@The Texas Medical Center
Resumo:
C-Reactive Protein (CRP) is a biomarker indicating tissue damage, inflammation, and infection. High-sensitivity CRP (hsCRP) is an emerging biomarker often used to estimate an individual’s risk for future coronary heart disease (CHD). hsCRP levels falling below 1.00 mg/l indicate a low risk for developing CHD, levels ranging between 1.00 mg/l and 3.00 mg/l indicate an elevated risk, and levels exceeding 3.00 mg/l indicate high risk. Multiple Genome-Wide Association Studies (GWAS) have identified a number of genetic polymorphisms which influence CRP levels. SNPs implicated in such studies have been found in or near genes of interest including: CRP, APOE, APOC, IL-6, HNF1A, LEPR, and GCKR. A strong positive correlation has also been found to exist between CRP levels and BMI, a known risk factor for CHD and a state of chronic inflammation. We conducted a series of analyses designed to identify loci which interact with BMI to influence CRP levels in a subsample of European-Americans in the ARIC cohort. In a stratified GWA analysis, 15 genetic regions were identified as having significantly (p-value < 2.00*10-3) distinct effects on hsCRP levels between the two obesity strata: lean (18.50 kg/m2 < BMI < 24.99 kg/m2) and obese (BMI ≥ 30.00 kg/m2). A GWA analysis performed on all individuals combined (i.e. not a priori stratified for obesity status) with the inclusion of an additional parameter for BMI by gene interaction, identified 11 regions which interact with BMI to influence hsCRP levels. Two regions containing the genes GJA5 and GJA8 (on chromosome 1) and FBXO11 (on chromosome 2) were identified in both methods of analysis suggesting that these genes possibly interact with BMI to influence hsCRP levels. We speculate that atrial fibrillation (AF), age-related cataracts and the TGF-β pathway may be the biological processes influenced by the interaction of GJA5, GJA8 and FBXO11, respectively, with BMI to cause changes in hsCRP levels. Future studies should focus on the influence of gene x bmi interaction on AF, age-related cataracts and TGF-β.
Resumo:
Autoimmune diseases are a group of inflammatory conditions in which the body's immune system attacks its own cells. There are over 80 diseases classified as autoimmune disorders, affecting up to 23.5 million Americans. Obesity affects 32.3% of the US adult population, and could also be considered an inflammatory condition, as indicated by the presence of chronic low-grade inflammation. C-reactive protein (CRP) is a marker of inflammation, and is associated with both adiposity and autoimmune inflammation. This study sought to determine the cross-sectional association between obesity and autoimmune diseases in a large, nationally representative population derived from NHANES 2009–10 data, and the role CRP might play in this relationship. Overall, the results determined that individuals with autoimmune disease were 2.11 times more likely to report being overweight than individuals without autoimmune disease and that CRP had a mediating affect on the obesity-autoimmune relationship. ^
Resumo:
Coronary heart disease (CHD) is the leading cause of death in women and rates markedly increase among women after 65 years of age. C-reactive protein (CRP) is a new clinical indicator of atherosclerotic-related inflammation with a direct pathogenic role. Studies show lifestyle factors can modulate CRP. Omega-3 fatty acids have anti-inflammatory properties and studies suggest that eating fish high in omega-3 fatty acids may lower CHD risk in women. This study sought to assess the possible role of omega-3 fatty acids in the reduction of CHD-related inflammation by investigating the effect of fish consumption on CRP levels. Methods. Twenty-four healthy postmenopausal women were randomly assigned to a fish group (usual diet plus two servings per week of enriched fish) or control group (usual diet with no fatty fish) for eight weeks. Omega-3 fatty acid-enriched fish developed by the West Virginia University Aquaculture Division was used. Serum CRP, serum interleukin-6 (IL-6), and the fatty acid content of red blood cells (RBC) were measured before and after the study. Women also completed food records. RESULTS: Baseline levels of CRP were low (85% of the fish group had normal levels) and few changes in CRP risk category were observed. Mean IL-6 levels were reduced by 27% and 35% in the fish and control groups, respectively (p for between-group difference = 0.60). Changes in RBC fatty acid composition were not statistically significant. Compared to control women, women in the fish group had greater reductions in mean triglycerides (p = 0.08), total cholesterol (P = 0.04), and LDL cholesterol levels (p = 0.06). Baseline dietary intake of total and monounsaturated fatty acids tended to be positively associated with baseline CRP, while vitamin E intake was inversely related. Saturated fat intake tended to have a positive association with IL-6. Conclusions. Findings regarding the effect of two servings of fish on CRP and IL-6 levels are inconclusive due to low baseline levels of CRP and IL-6. However, results indicate two servings of fatty fish have favorable effects on blood lipids. The relationship of dietary components with CRP and IL-6 is complex and further research is needed to determine the varying roles of diet on the inflammatory process. ^
Resumo:
Proto-oncogene c-fos is a member of the class of early-response genes whose transient expression plays a crucial role in cell proliferation, differentiation, and apoptosis. Degradation of c- fos mRNA is an important mechanism for controlling c-fos expression. Rapid mRNA turnover mediated by the protein-coding-region determinant (mCRD) of the c-fos transcript illustrates a functional interplay between mRNA turnover and translation that coordinately influences the fate of cytoplasmic mRNA. It is suggested that mCRD communicates with the 3′ poly(A) tail via an mRNP complex comprising mCRD-associated proteins, which prevents deadenylation in the absence of translation. Ribosome transit as a result of translation is required to alter the conformation of the mRNP complex, thereby eliciting accelerated deadenylation and mRNA decay. To gain further insight into the mechanism of mCRD-mediated mRNA turnover, Unr was identified as an mCRD-binding protein, and its binding site within mCRD was characterized. Moreover, the functional role for Unr in mRNA decay was demonstrated. The result showed that elevation of Unr protein level in the cytoplasm led to inhibition of mRNA destabilization by mCRD. In addition, GST pull-down assay and immuno-precipitation analysis revealed that Unr interacted with PABP in an RNA-independent manner, which identified Unr as a novel PABP-interacting protein. Furthermore, the Unr interacting domain in PABP was characterized. In vivo mRNA decay experiments demonstrated a role for Unr-PABP interaction in mCRD-mediated mRNA decay. In conclusion, the findings of this study provide the first evidence that Unr plays a key role in mCRD-mediated mRNA decay. It is proposed that Unr is recruited by mCRD to initiate the formation of a dynamic mRNP complex for communicating with poly(A) tail through PABP. This unique mRNP complex may couple translation to mRNA decay, and perhaps to recruit the responsible nuclease for deadenylation. ^
Resumo:
A study of the association of Herpes simplex virus 1 and 2 exposure to early atherosclerosis using high C-reactive protein level as a marker was carried out in US born, non-pregnant, 20-49 year olds participating in a national survey between 1999 and 2004. Participants were required to have valid results for Herpes simplex virus 1 and 2 and C-Reactive Protein for inclusion. Cases were those found to have a high C-reactive protein level of 0.3-1 mg/dL, while controls had low to normal values (0.01-0.29 mg/dL). Overall, there were 1211 cases and 2870 controls. Mexican American and non-Hispanic black women were much more likely to fall into the high cardiac risk group than the other sex race groups with proportions of 44% and 39%, respectively. ^ Herpesvirus exposure was categorized such that Herpes simplex virus 1 and 2 exposure could be studied simultaneously within the same individual and models. The HSV 1+, HSV 2- category included the highest percentage (45.63%) of participants, followed by HSV 1-, HSV 2- (30.16%); HSV 1+, HSV 2+ (15.09%); and HSV 1-, HSV 2+ (9.12%) respectively. The proportion of participants in the HSV 1+, HSV 2- category was substantially higher in Mexican Americans (63%-66%). Further, the proportion in the HSV 1+, HSV 2+ category was notably higher in the non-Hispanic black participants (23%-44%). Non-Hispanic black women also had the highest percentage of HSV 1-, HSV 2+ exposure of all the sex race groups at 17%. ^ Overall, the unadjusted odds ratios for atherosclerotic disease defined by C-reactive protein with HSV 1-, HSV 2- as the referent group was 1.62 (95% CI 1.23-2.14) for HSV 1 +, HSV 2+; 1.3 (95% CI 1.10-1.69 for HSV 1+, HSV 2-; and 1.52 (95% CI 1.14-2.01). When the study was stratified into sex-race groups, only HSV 1+, HSV 2- in the Non-Hispanic white men remained significant (OR=1.6; 95% CI 1.06-2.43). Adjustment for selected covariates was made in the multivariate model for both the overall and sex-race stratified studies. High C-reactive protein values were not associated with any of the Herpesvirus exposure levels in either the overall or stratified analyses. ^
Resumo:
c-Met is the protein tyrosine kinase receptor for hepatocyte growth factor/scatter factor (HGF/SF) and mediates several normal cellular functions including proliferation, survival, and migration. Overexpression of c-Met correlates with progression and metastasis of human colorectal carcinoma (CRC). The goals of this study were to determine if overexpression of c-Met directly contributes to tumorigenicity and liver metastatic potential of colon cancer, and what are the critical pathways regulated by c-Met in this process. The studies used two colon tumor cell lines, KM12SM and KM20, which express high levels of constitutively active c-Met and are highly metastatic in nude mice. To examine the effects of c-Met overexpression, subclones of theses lines with reduced c-Met expression were obtained following transfection with a c-Met specific targeting ribozyme. Reduction of c-Met in KM12SM cells abolished liver metastases when cells were injected intrasplenically in an experimental metastasis assay. However, c-Met downregulation in theses clones was unstable. Three stable KM20 clones with a 25–35% reduction in c-Met protein levels but 60–90% reduction in basal c-Met autophosphorylation and kinase activity were obtained. While HGF increased c-Met kinase activity in the clones with reduced c-Met, the activity was less than that observed in parental or control transfected cells. Correlating with the reduction in c-Met kinase activity, subclones with reduced c-Met expression had significantly reduced in vitro growth rates, soft-agar colony forming abilities, and increased apoptosis. HGF/SF treatment did not affect anchorage-dependent growth or soft-agar colony forming abilities. Further, c-Met downregulation significantly impaired the ability of HGF/SF to induce migration. To examine the effects of reduced c-Met on tumor formation, parental and c-Met reduced KM20 cells were grown subcutaneously and intrahepatically in nude mice. c-Met downregulation delayed, but did not abolish growth at the subcutaneous site. When these cells were injected intrahepatically, both tumor incidences and size were significantly reduced. To further understand the molecular basis of c-Met in promoting tumor growth, the activation of several signaling intermediates that have been implicated in c-Met mediated growth, survival and migration were compared between KM20 parental cells and subclones with reduced c-Met expression levels. The expression and activity (as determined by phosphorylation) of AKT and Erk1/2 were unaltered. In contrast, Src kinase activity, as measured by immune complex kinase assay, was reduced 2–5 fold following c-Met downregulation. As Src has been implicated in growth, survival and migration, Src activation in c-Met overexpressing lines is likely contributing to the tumorigenic and metastatic capabilities of colon tumor cell lines that overexpress c-Met. Collectively, these results suggest that c-Met overexpression plays a causal role in the development of CRC liver metastases, and that c-Src and c-Met inhibitors may be of potential therapeutic benefit for late-stage colon cancer. ^
Resumo:
The v-mos gene of Moloney murine sarcoma virus (Mo-MuSv) encodes a serine/threonine protein kinase capable of inducing cellular transformation. The c-mos protein is an important cell cycle regulator that functions during meiotic cell division cycles in germ cells. The overall function of c-mos in controlling meiosis is becoming better understood but the role of v-mos in malignant transformation of cells is largely unknown.^ In this study, v-mos protein was shown to be phosphorylated by M phase kinase in vitro and in vivo. The kinase activity and neoplastic transforming ability of v-mos is positively regulated by the phosphorylation. Together with the earlier finding of activation of M phase kinase by c-mos, these results raise the possibility of mutual regulation between M phase kinase and mos kinases.^ In addition to its functional interaction with the M phase kinase, the v-mos protein was shown to be present in the same protein complex with a cyclin-dependent kinase (cdk). In addition, an antibody that recognizes the cdk proteins was shown to co-precipitate the v-mos proteins in the interphase and mitotic cells transformed by p85$\sp{\rm gag-mos}$. Cdk proteins have been shown to be associated with nonmitotic cyclins which are potential oncogenes. The perturbation of cdk kinase or the activation of non-mitotic cyclins as oncogenes by v-mos could contribute directly to v-mos induced cellular transformation. v-mos proteins were also shown to interact with tubulin and vimentin, the essential components of microtubules and type IV intermediate filaments, respectively. The organizations of both microtubules and intermediate filaments are cell cycle-regulated. These results suggest that the v-mos kinase could be directly involved in inducing morphological changes typically seen in transformed cells.^ The interactions between the v-mos protein and these cell cycle control elements in regards to v-mos induced neoplastic transformation are discussed in detail in the text. ^
Resumo:
c-Src, a protein tyrosine kinase (PTK) the specific activity of which is increased $>$20-fold in $\sim$80% of colon tumors and colon tumor cell lines, plays a role in both growth regulation and tumorigenicity of colon tumor cells. To examine the effect of increased c-Src specific activity on colon tumor cells, coumarin-derived tyrosine analog PTK inhibitors were assessed in a standard colon tumor cell line, HT-29. Of the nine compounds tested for inhibiting c-Src activity in a standard immune complex kinase assay from c-Src precipitated from HT-29 cells, the 7,8-dihydroxy-containing compounds daphnetin and fraxetin were most effective, with IC$\sb{50}$s of 0.6 $\pm$ 0.2 mM and 0.6 $\pm$ 0.3 mM, respectively. Treatment of HT-29 cells with daphnetin resulted in inhibition of cell growth in a dose-dependent manner. In contrast, scopoletin, a relatively poor Src inhibitor in vitro, did not inhibit HT-29 cell growth in the concentration range tested. In daphnetin treated cells, a dose-dependent decrease of c-Src activity paralleling cell growth inhibition was also observed; the IC$\sb{50}$ was 0.3 $\pm$ 0.1 mM for c-Src autophosphorylation. In contrast, the IC$\sb{50}$ for c-Src protein level was $>$ 0.6 mM, indicating that the effects of daphnetin were primarily an enzymatic activity of c-Src, rather than protein level in HT-29 cells. These results are the first to demonstrate that c-Src specific activity regulates colon tumor cell growth.^ To elucidate the signaling pathways activated by c-Src in colon tumor cells, the Src family substrate FAK, which has been shown to play a role in both extracellular matrix-dependent cell growth and survival, was examined. Coprecipitation assays showed Src-FAK association in detergent insoluble fractions of both attached and detached HT-29 cells, indicating that Src-FAK association in HT-29 cells is stable and, unlike untransformed cells, not dependent on cell-substratum contact. FAK also coprecipitated with Grb2, an adaptor protein also playing a role in cell proliferation and survival, in both attached and detached HT-29 cells, suggesting that a Src-FAK-Grb2-mediated signaling pathway(s) in HT-29 cells is/are constitutively activated.^ FAK was also analyzed in c-src antisense HT-29 clones AS15 and AS33 in which c-Src is specifically reduced by transfection of an antisense expression vector. FAK protein level is unexpectedly decreased in both AS15 and AS33 cells by 5-fold and 1.5-fold compared to HT-29, respectively, corresponding with the decreased expression of c-Src observed in these cells. FAK protein level was not decreased compared to parental in the c-src "sense" clone S8. Northern blot analyses showed decreased FAK mRNA levels compared to parental in AS15 and AS33, correlating with decreased FAK protein level, indicating that FAK activity in the antisense cells is regulated, at least in part, by altering FAK expression, and that this regulation is Src dependent. Because FAK has been implicated in anoikis, the ability of c-src antisense cells to survive in the absence of cell-substratum contact was examined. Decreased cell survival is seen in both AS15 and AS33, correlating with the decreases in c-Src and FAK levels and tumorigenicity in these cells. These results suggest that at least one mechanism by which activation of c-Src contributes to tumorigenic phenotype of colon tumor cells is by aberrantly promoting a survival signal through unregulated Src-FAK-Grb2 complexes. (Abstract shortened by UMI.) ^
Resumo:
Philadelphia chromosome (Ph)-positive chronic myeloid leukemia is caused by a clonal myeloproliferative expansion of malignant primitive hematopoietic progenitor cells. The Ph results from the reciprocal translocation of the ends of chromosome 9 and 22, which generate Bcr-Abl fusion proteins. The Bcr-Abl proteins possess a constitutively activated Abl tyrosine kinase, which is the driving force responsible for causing leukemia. The activated Bcr-Abl tyrosine kinase stimulates multiple signal transduction pathway affecting growth, differentiation and survival of cells. It is known that the Bcr-Abl tyrosine kinase activates several signaling proteins including Stat5, which is a member of the Jak/Stat pathway that is activated by cytokines that control the growth and differentiation of normal hematopoietic cells. Our laboratory was the first one to report that Jak2 tyrosine kinase is activated in a human Bcr-Abl positive hematopoietic cell line. In this thesis, we further investigated the activation of Jak2 by Bcr-Abl. We found that Jak2 is activated not only in cultured Bcr-abl positive cell lines but also in blood cells from CML blast crisis patients. We also demonstrated that SH2 domain of Bcr-Abl is required for efficient activation Jak2. We further showed that Jak2 binds to the C-terminal domain of Bcr-Abl; tyrosine residue 1007, which is critical for Jak2 activation, is phosphorylated by Bcr-Abl. We searched downstream targets of Jak2 in Bcr-Abl positive cells. We treated Bcr-Abl positive cells with a Jak2 kinase inhibitor AG490 and found that c-Myc protein expression is inhibited by AG490. We further demonstrated that Jak2 inhibitor AG490 not only inhibit C-MYC transcription but also protect c-Myc protein from proteasome-dependent degradation. We also showed that AG490 did not affect Bcr-Abl kinase activity and Stat5 activation and its downstream target Bcl-xL expression. AG490 also induced apoptosis of Bcr-Abl positive cells, similar to Bcr-Abl kinase inhibitor STI571 (also termed Gliveec, a very effective drug for CML), but unlike STI571 the apoptosis effects induced by AG490 can not be rescued by IL-3 containing WEHI conditioned medium. We further established several Bcr-Abl positive clones that express a kinase-inactive Jak2 and found that these clones had reduced tumor formation in nude mice assays. Taken together, these results establish that Jak2 is activated in Bcr-Abl positive CML cells and it is required for c-Myc induction and the oncogenic effects of Bcr-Abl. Furthermore, Jak2 and Stat5 are two independent targets of Bcr-Abl. ^