21 resultados para bone cells
em DigitalCommons@The Texas Medical Center
Resumo:
We have previously shown that vasculogenesis, the process by which bone marrow-derived cells are recruited to the tumor and organized to form a blood vessel network de novo, is essential for the growth of Ewing’s sarcoma. We further demonstrated that these bone marrow cells differentiate into pericytes/vascular smooth muscle cells(vSMC) and contribute to the formation of the functional vascular network. The molecular mechanisms that control bone marrow cell differentiation into pericytes/vSMC in Ewing’s sarcoma are poorly understood. Here, we demonstrate that the Notch ligand Delta like ligand 4 (DLL4) plays a critical role in this process. DLL4 is essential for the formation of mature blood vessels during development and in several tumor models. Inhibition of DLL4 causes increased vascular sprouting, decreased pericyte coverage, and decreased vessel functionality. We demonstrate for the first time that DLL4 is expressed by bone marrow-derived pericytes/vascular smooth muscle cells in two Ewing’s sarcoma xenograft models and by perivascular cells in 12 out of 14 patient samples. Using dominant negative mastermind to inhibit Notch, we demonstrate that Notch signaling is essential for bone marrow cell participation in vasculogenesis. Further, inhibition of DLL4 using either shRNA or the monoclonal DLL4 neutralizing antibody YW152F led to dramatic changes in blood vessel morphology and function. Vessels in tumors where DLL4 was inhibited were smaller, lacked lumens, had significantly reduced numbers of bone marrow-derived pericyte/vascular smooth muscle cells, and were less functional. Importantly, growth of TC71 and A4573 tumors was significantly inhibited by treatment with YW152F. Additionally, we provide in vitro evidence that DLL4-Notch signaling is involved in bone marrow-derived pericyte/vascular smooth muscle cell formation outside of the Ewing’s sarcoma environment. Pericyte/vascular smooth muscle cell marker expression by whole bone marrow cells cultured with mouse embryonic stromal cells was reduced when DLL4 was inhibited by YW152F. For the first time, our findings demonstrate a role for DLL4 in bone marrow-derived pericyte/vascular smooth muscle differentiation as well as a critical role for DLL4 in Ewing’s sarcoma tumor growth.
Resumo:
We previously demonstrated that bone marrow cells (BMCs) migrate to TC71 and A4573 Ewing’s sarcoma tumors where they can differentiate into endothelial cells (ECs) and pericytes and, participate in the tumor vascular development. This process of neo-vascularization, known as vasculogenesis, is essential for Ewing’s sarcoma growth with the soluble vascular endothelial growth factor, VEGF165, being the chemotactic factor for BMC migration to the tumor site. Inhibiting VEGF165 in TC71 tumors (TC/siVEGF7-1) inhibited BMC infiltration to the tumor site and tumor growth. Introducing the stromal-derived growth factor (SDF-1α) into the TC/siVEGF7-1 tumors partially restored vasculogenesis with infiltration of BMCs to a perivascular area where they differentiated into pericytes and rescued tumor growth. RNA collected from the SDF-1α-treated TC/siVEGF7-1 tumors also revealed an increase in platelet-derived growth factor B (PDGF-B) mRNA levels. PDGF-B expression is elevated in several cancer types and the role of PDGF-B and its receptor, PDGFR-β, has been extensively described in the process of pericyte maturation. However, the mechanisms by which PDGF-B expression is up-regulated during vascular remodeling and the process by which BMCs differentiate into pericytes during tumor vasculogenesis remain areas of investigation. In this study, we are the first to demonstrate that SDF-1α regulates the expression of PDGF-B via a transcriptional mechanism which involves binding of the ELK-1 transcription factor to the pdgf-b promoter. We are also first to validate the critical role of the SDF-1α/PDGF-B pathway in the differentiation of BMCs into pericytes both in vitro and in vivo. SDF-1α up-regulated PDGF-B expression in both TC/siVEGF7-1 and HEK293 cells. In contrast, down-regulating SDF-1α, down-regulated PDGF-B. We cloned the 2 kb pdgf-b promoter fragment into the pGL3 reporter vector and showed that SDF-1α induced pdgf-b promoter activity. We used chromatin immunoprecipitation (ChIP) and demonstrated that the ELK-1 transcription factor bound to the pdgf-b promoter in response to SDF-1α stimulation in both TC/siVEGF7-1 and HEK293 cells. We collected BMCs from the hind femurs of mice and cultured the cells in medium containing SDF-1α and PDGF-B and found that PDGFR-β+ BMCs differentiated into NG2 and desmin positive pericytes in vitro. In contrast, inhibiting SDF-1α and PDGF-B abolished this differentiation process. In vivo, we injected TC71 or A4573 tumor-bearing mice with the SDF-1α antagonist, AMD3100 and found that inhibiting SDF-1α signaling in the tumor microenvironment decreased the tumor microvessel density, decreased the tumor blood vessel perfusion and, increased tumor cell apoptosis. We then analyzed the effect of AMD3100 on vasculogenesis of Ewing’s sarcoma and found that BMCs migrated to the tumor site where they differentiated into ECs but, they did not form thick perivascular layers of NG2 and desmin positive pericytes. Finally, we stained the AMD3100-treated tumors for PDGF-B and showed that inhibiting SDF-1α signaling also inhibited PDGF-B expression. All together, these findings demonstrated that the SDF-1α/PDGF-B pathway plays a critical role in the formation of BM-derived pericytes during vasculogenesis of Ewing’s sarcoma tumors.
Resumo:
Promotion of remyelination is an important therapeutic strategy to facilitate functional recovery after traumatic spinal cord injury (SCI). Transplantation of neural stem cells (NSCs) or oligodendrocyte precursor cells (OPCs) has been used to enhance remyelination after SCI. However, the microenvironment in the injured spinal cord is inhibitory for oligodendrocyte (OL) differentiation of NSCs or OPCs. Identifying the signaling pathways that inhibit OL differentiation in the injured spinal cord could lead to new therapeutic strategies to enhance remyelination and functional recovery after SCI. In the present study, we show that reactive astrocytes from the injured rat spinal cord or their conditioned media inhibit OL differentiation of adult OPCs with concurrent promotion of astrocyte differentiation. The expression of bone morphogenetic proteins (BMP) is dramatically increased in the reactive astrocytes and their conditioned media. Importantly, blocking BMP activity by BMP receptor antagonist, noggin, reverse the effects of active astrocytes on OPC differentiation by increasing the differentiation of OL from OPCs while decreasing the generation of astrocytes. These data indicate that the upregulated bone morphogenetic proteins in the reactive astrocytes are major factors to inhibit OL differentiation of OPCs and to promote its astrocyte differentiation. These data suggest that manipulation of BMP signaling in the endogenous or grafted NSCs or OPCs may be a useful therapeutic strategy to increase their OL differentiation and remyelination and enhance functional recovery after SCI.
Resumo:
The interaction of hematopoietic precursor cell with bone marrow stromal cells is assumed to be important to the survival of hematopoietic precursor cells during hematopoietic cell long-term culture. Early hematopoietic stem cells are preferentially found within the stromal adherent cell fraction in primary long-term bone marrow cultures. The purpose of this dissertation was to understand the molecular mechanisms that govern these interactions for the regulation of survival and proliferation of early versus late hematopoietic cells.^ Monoclonal antibodies to the VLA-4 recognize the alpha4 beta1 integrin receptor on human hematopoietic cells. This monoclonal antibody blocks the adhesion between early hematopoietic progenitor cells (CD34 selected cells) and stromal cells when added to cultures of these cells. Addition of the VLA-4 monoclonal antibody to cultures of stromal cells and CD34 selected cells was shown to induce apoptosis of CD34 selected cells in these CD34 selected cell/stromal cell cocultures, as measured by the terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-biotin nick end-labeling method. In contrast to these experiments with early hematopoietic progenitor cells (CD34+), the level of adhesion between more differentiated cells (unfractionated hematopoietic cells) and stromal cells was not significantly altered by addition of the anti-VLA-4 monoclonal antibody. Similarly, the level of apoptosis of unfractionated hematopoietic cells was not significantly increased by the addition of anti-VLA-4 monoclonal antibody to cultures of the latter cells with stromal cells. The binding of the unfractionated cells is less than that of the CD34 selected. Since there is no difference between the alpha4 beta1 integrin expression level of the early and late myeloid cells, there may be a difference in the functional state of the integrin between the early and late myeloid cells. We also show that CD34+ selected precursor cells proliferate at a higher rate when these cells are plated on recombinant VCAM-1 molecules. These data indicate that the alpha4beta1 integrin receptor (VLA-4) plays a central role in the apoptosis rescue function which results from the anchorage-dependent growth of the CD34 selected early hematopoietic cells on stromal cells. The data suggest that these apoptosis rescue pathways have less significance as the cells mature and become anchorage-independent in their growth. These data should assist in the design of systems for the ex vivo proliferation and transduction of early hematopoietic cells for genetic therapy. ^
Resumo:
Both angiogenesis and vasculogenesis contribute to the formation and expansion of tumor neovasculature. We demonstrated that bone marrow (BM)-derived cells migrated to TC71 Ewing's tumors and differentiated into endothelial cells lining perfused, functional tumor neovessels. In addition, a substantial fraction of recruited, BM-derived cells resided in the vessel vicinity but did not demonstrate endothelial differentiation. Rather, these perivascular cells expressed desmin and PDGFR-β, implying pericyte-like/vascular smooth muscle cell differentiation. No defined, consensus set of markers exists for endothelial progenitor cells (EPCs) and the specific subsets of BM cells that participate in vessel formation are poorly understood. We used a functional in vivo assay to investigate the roles performed by specific human- and murine-derived stem/progenitor subpopulations within Ewing's sarcoma tumors. CD34 +45+, CD34+38-, VEGFR2 + and Sca1+Gr1+ cells were demonstrated to establish residence within the expanding tumor vascular network and differentiate into endothelial cells and pericytes. By constrast, CD34-45 + and Sca1-Gr1+ cells predominantly localized to sites outside the Ewing's tumor vasculature, and differentiated into macrophages. Cytokines, such as VEGF, influence the recruitment of BM cells and their incorporation into the tumor vasculature. VEGF165-inhibited TC/siVEGF7-1 Ewing's tumors showed delayed in vivo tumor growth, decreased vessel density, and reduced infiltration of BM progenitor cells. We tested whether another chemoattractant, Stromal Cell-Derived Factor-1 (SDF-1), could augment the growth of these VEGF165-inhibited TC/siVEGF 7-1 tumors by enhancing the recruitment of BM cells and stimulating neovasculature expansion. SDF-1 promoted progenitor cell chemotaxis and retainment of BM-derived pericyte precursors in close association with functional, perfused tumor blood vessels. Treatment of TC/siVEGF7-1 tumors with adenovirus-SDF-1α resulted in augmented tumor size, enhanced pericyte coverage of tumor neovessels, remodeling of vascular endothelium into larger, functional structures, and upregulation of PDGF-BB, with no effect on VEGF165. Taken together, these findings suggest that the recruitment of BM stem/progenitor cells plays an important role in the growth of Ewing's tumors. ^
Resumo:
Bone marrow (BM) stromal cells are ascribed two key functions, 1) stem cells for non-hematopoietic tissues (MSC) and 2) as components of the hematopoietic stem cell niche. Current approaches studying the stromal cell system in the mouse are complicated by the low yield of clonogenic progenitors (CFU-F). Given the perivascular location of MSC in BM, we developed an alternative methodology to isolate MSC from mBM. An intact ‘plug’ of bone marrow is expelled from bones and enzymatically disaggregated to yield a single cell suspension. The recovery of CFU-F (1917.95+199) reproducibly exceeds that obtained using the standard BM flushing technique (14.32+1.9) by at least 2 orders of magnitude (P<0.001; N = 8) with an accompanying 196-fold enrichment of CFU-F frequency. Purified BM stromal and vascular endothelial cell populations are readily obtained by FACS. A detailed immunophenotypic analysis of lineage depleted BM identified PDGFRαβPOS stromal cell subpopulations distinguished by their expression of CD105. Both subpopulations retained their original phenotype of CD105 expression in culture and demonstrate MSC properties of multi-lineage differentiation and the ability to transfer the hematopoietic microenvironment in vivo. To determine the capacity of either subpopulation to support long-term multi-lineage reconstituting HSCs, we fractionated BM stromal cells into either the LinNEGPDGFRαβPOSCD105POS and LINNEGPDGFRαβPOSCD105LOW/- populations and tested their capacity to support LT-HSC by co-culturing each population with either 1 or 10 HSCs for 10 days. Following the 10 day co-culture period, both populations supported transplantable HSCs from 10 cells/well co-cultures demonstrating high levels of donor repopulation with an average of 65+23.6% chimerism from CD105POS co-cultures and 49.3+19.5% chimerism from the CD105NEG co-cultures. However, we observed a significant difference when mice were transplanted with the progeny of a single co-cultured HSC. In these experiments, CD105POS co-cultures (100%) demonstrated long-term multi- lineage reconstitution, while only 4 of 8 mice (50%) from CD105NEG -single HSC co-cultures demonstrated long-term reconstitution, suggesting a more limited expansion of functional stem cells. Taken together, these results demonstrate that the PDGFRαβCD105POS stromal cell subpopulation is distinguished by a unique capacity to support the expansion of long-term reconstituting HSCs in vitro.
Resumo:
The tumor microenvironment is comprised of a vast array of heterogeneous cells including both normal and neoplastic cells. The tumor stroma recruitment process has been exploited for an effective gene delivery technique using bone marrow derived MSC. Targeted migration of the MSC toward the tumor microenvironment, while successful, is not yet fully understood. This study was designed to assess the role of CD44 in the migration of MSC toward the tumor microenvironment and to determine the implications of CD44-deficient MSC within the tumor stroma. Inhibition of MSC migration was evaluated through a variety of methods in vitro and in vivo including CD44 receptor knockdown, CD44 antagonists, CD44 neutralizing antibodies and small molecule inhibitor of matrix metalloproteinases. Blocking CD44 signaling through MMP inhibition was characterized by lack of intracellular domain cleavage and lead to the decrease in Twist gene expression. A functional relationship between CD44 and Twist expression was confirmed by chromatin immunoprecipitation. Next, a series of murine tumor models were used to examine the role of CD44 deficient stroma within the tumor microenvironment. Labeled transgenic CD44 knockout (KO) MSC or wild type (WT) C57/B6 MSC were used to analyze the stromal incorporation within murine breast carcinomas (EO771 and 4T1). Subsequent tumors were analyzed for vessel formation (CD31), and the presence of tumor associated fibroblast (TAF) markers, α-smooth muscle actin (α-SMA), fibroblast activation protein (FAP), and fibroblast specific protein (FSP). The tumors with CD44KO MSC cells had less vessel formation than the tumors with WT MSC. The lack of fibroblastic TAF population as defined by FAP/FSP expression by the CD44KO MSC admixed tumors suggest that the bone marrow derived population of MSC were unable to contribute to the fibroblastic stromal population. Subsequently, a bone marrow transplantation experiment confirmed the endogenous migratory deficiencies of the CD44KO bone marrow derived stromal cells toward the tumor microenvironment in vivo. WT mice with CD44KO bone marrow had less CD44KOderived tumor stroma compared to mice with WT bone marrow. These results indicate that CD44 is crucial to stromal cell migration and incorporation to the tumor microenvironment as TAF.
Resumo:
The molecular mechanisms controlling bone extracellular matrix (ECM) deposition by differentiated osteoblasts in postnatal life, called hereafter bone formation, are unknown. This contrasts with the growing knowledge about the genetic control of osteoblast differentiation during embryonic development. Cbfa1, a transcriptional activator of osteoblast differentiation during embryonic development, is also expressed in differentiated osteoblasts postnatally. The perinatal lethality occurring in Cbfa1-deficient mice has prevented so far the study of its function after birth. To determine if Cbfa1 plays a role during bone formation we generated transgenic mice overexpressing Cbfa1 DNA-binding domain (DeltaCbfa1) in differentiated osteoblasts only postnatally. DeltaCbfa1 has a higher affinity for DNA than Cbfa1 itself, has no transcriptional activity on its own, and can act in a dominant-negative manner in DNA cotransfection assays. DeltaCbfa1-expressing mice have a normal skeleton at birth but develop an osteopenic phenotype thereafter. Dynamic histomorphometric studies show that this phenotype is caused by a major decrease in the bone formation rate in the face of a normal number of osteoblasts thus indicating that once osteoblasts are differentiated Cbfa1 regulates their function. Molecular analyses reveal that the expression of the genes expressed in osteoblasts and encoding bone ECM proteins is nearly abolished in transgenic mice, and ex vivo assays demonstrated that DeltaCbfa1-expressing osteoblasts were less active than wild-type osteoblasts. We also show that Cbfa1 regulates positively the activity of its own promoter, which has the highest affinity Cbfa1-binding sites characterized. This study demonstrates that beyond its differentiation function Cbfa1 is the first transcriptional activator of bone formation identified to date and illustrates that developmentally important genes control physiological processes postnatally.
Resumo:
Mast cell degranulation is a highly regulated, calcium-dependent process, which is important for the acute release of inflammatory mediators during the course of many pathological conditions. We previously found that Synaptotagmin-2, a calcium sensor in neuronal exocytosis, was expressed in a mast cell line. We postulated that this protein may be involved in the control of mast cell-regulated exocytosis, and we generated Synaptotagmin-2 knock-out mice to test our hypothesis. Mast cells from this mutant animal conferred an abnormally decreased passive cutaneous anaphylaxis reaction on mast cell-deficient mice that correlated with a specific defect in mast cell-regulated exocytosis, leaving constitutive exocytosis and nonexocytic mast cell effector responses intact. This defect was not secondary to abnormalities in the development, maturation, migration, morphology, synthesis, and storage of inflammatory mediators, or intracellular calcium transients of the mast cells. Unlike neurons, the lack of Synaptotagmin-2 in mast cells was not associated with increased spontaneous exocytosis.
Determining the roles of dendritic cells and ICAM-1 in the transpresentation of IL-15 to CD8 T cells
Resumo:
The maintenance and generation of memory CD8 T cells is dependent on the cytokine IL-15. IL-15 is delivered by a novel mechanism termed transpresentation: IL-15 is presented by a cell expressing IL-15Ralpha to the CD8 T cell which responds via IL-2Rbeta/gammac. The identity of what cells transpresent IL-15 to support the survival and homeostatic proliferation of memory CD8 T cells is unknown. Using a transgenic mouse model that limits IL-15 transpresentation to DCs, I have demonstrated that DCs transpresent IL-15 to CD8 T cells. DCs transpresent IL-15 to CD8 T cells during the contraction of an immune response and also drive homeostatic proliferation of memory CD8 T cells. Additionally, I identified a role for ICAM-1 in promoting homeostatic proliferation. Wt memory CD8 T cells displayed impaired homeostatic proliferation in ICAM-1-/- hosts but not in models of acute IL-15-driven proliferation. In this way, the role of ICAM-1 in IL-15 transpresentation resembles the role for ICAM-1 in antigenpresentation: where antigen or IL-15 is limited, adhesion molecules are important for generating maximal responses. In vitro cultures between CD8 T cells and bone marrowdifferentiated DCs (BMDC) activated with a TLR agonist established a model of proliferation and signaling in CD8 T cells that was dependent on IL-15 transpresentation and required ICAM-1 expression by BMDCs. Regarding the expression of IL-15, I demonstrated that in normal mice it is undetectable without stimulation but is elevated in lymphopenic mice, suggesting a role for T cells in regulating IL-15 expression. Overall, these studies have identified many novel aspects of the interaction between DCs and CD8 T cells that were previously unknown. The study of adhesion molecules in IL-15 transpresentation describes a novel role for these well-known adhesion molecules and it will be interesting for future studies to further characterize this relationship for other IL-15-dependent cell types.
Determining the roles of dendritic cells and ICAM-1 in the transpresentation of IL-15 to CD8 T cells
Resumo:
The maintenance and generation of memory CD8 T cells is dependent on the cytokine IL-15. IL-15 is delivered by a novel mechanism termed transpresentation: IL-15 is presented by a cell expressing IL-15Ralpha to the CD8 T cell which responds via IL-2Rbeta/gammac. The identity of what cells transpresent IL-15 to support the survival and homeostatic proliferation of memory CD8 T cells is unknown. Using a transgenic mouse model that limits IL-15 transpresentation to DCs, I have demonstrated that DCs transpresent IL-15 to CD8 T cells. DCs transpresent IL-15 to CD8 T cells during the contraction of an immune response and also drive homeostatic proliferation of memory CD8 T cells. Additionally, I identified a role for ICAM-1 in promoting homeostatic proliferation. Wt memory CD8 T cells displayed impaired homeostatic proliferation in ICAM-1-/- hosts but not in models of acute IL-15-driven proliferation. In this way, the role of ICAM-1 in IL-15 transpresentation resembles the role for ICAM-1 in antigenpresentation: where antigen or IL-15 is limited, adhesion molecules are important for generating maximal responses. In vitro cultures between CD8 T cells and bone marrowdifferentiated DCs (BMDC) activated with a TLR agonist established a model of proliferation and signaling in CD8 T cells that was dependent on IL-15 transpresentation and required ICAM-1 expression by BMDCs. Regarding the expression of IL-15, I demonstrated that in normal mice it is undetectable without stimulation but is elevated in lymphopenic mice, suggesting a role for T cells in regulating IL-15 expression. Overall, these studies have identified many novel aspects of the interaction between DCs and CD8 T cells that were previously unknown. The study of adhesion molecules in IL-15 transpresentation describes a novel role for these well-known adhesion molecules and it will be interesting for future studies to further characterize this relationship for other IL-15-dependent cell types.
Resumo:
Bone marrow is a target organ site involved in multiple diseases including myeloproliferative disorders and hematologic malignancies and metastases from breast and prostate. Most of these diseases are characterized with poor quality of life, and the treatment options are only palliative due to lack of delivery mechanisms for systemically injected drugs which results in dose limitation to protect the healthy hematopoietic cells. Therefore, there is a critical need to develop effective therapeutic strategies that allow for selective delivery of therapeutic payload to the bone marrow. Nanotechnology-based drug delivery systems provide the opportunity to deliver drugs to the target tissue while decreasing exposure to normal tissues. E-selectin is constitutively expressed on the bone marrow vasculature, but almost absent in normal vessels, and therefore, E-selectin targeted drug delivery presents an ideal strategy for the delivery of therapeutic nanoparticles to the bone marrow. The objective of this study was to develop a novel bone marrow targeted multistage vector (MSV) via E-selectin for delivery of therapeutics and imaging agents. To achieve this goal, Firstly, an E-selectin thioaptamer (ESTA) ligand was identified through a two-step screening from a combinatorial thioaptamer library. Next, ESTA-conjugated MSV (ESTA-MSV) were developed and evaluated for their stability and binding to E-selectin expressing endothelial cells. Different types of nanoparticles including liposomes, quantum dots, and iron oxide nanoparticles were loaded into the porous structure of ESTA-MSV. In vivo targeting experiments demonstrated 8-fold higher accumulation of ESTA-MSV in the mouse bone marrow as compared to non-targeted MSV Furthermore, intravenous injection of liposomes loaded ESTA-MSV resulted in a significantly higher accumulation of liposome in the bone marrow space as compared to injection of non-targeted MSV or liposomes alone. Overall this study provides first evidence that E-selectin targeted multistage vector preferentially targets to bone marrow vasculature and delivers larger amounts of nanoparticles. This delivery strategy holds potential for the selective delivery of large amounts of therapeutic payload to the vascular niches in the bone marrow for the treatment of bone marrow associated diseases.
Resumo:
In a phase I clinical trial, six multiple myeloma patients, who were non-responsive to conventional therapy and were scheduled for bone marrow transplantation, received Holmium-166 ($\sp{166}$Ho) labeled to a bone seeking agent, DOTMP (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetramethylene-phosphonic acid), for the purpose of bone marrow ablation. The specific aims of my research within this protocol were to evaluate the toxicity and efficacy of $\sp{166}$Ho DOTMP by quantifying the in vivo pharmacokinetics and radiation dosimetry, and by correlating these results to the biologic response observed. The reproducibility of pharmacokinetics from multiple injections of $\sp{166}$Ho DOTMP administered to these myeloma patients was demonstrated from both blood and whole body retention. The skeletal concentration of $\sp{166}$Ho DOTMP was heterogenous in all six patients: high in the ribs, pelvis, and lumbar vertebrae regions, and relatively low in the femurs, arms, and head.^ A novel technique was developed to calculate the radiation dose to the bone marrow in each skeletal ROI, and was applied to all six $\sp{166}$Ho DOTMP patients. Radiation dose estimates for the bone marrow calculated using the standard MIRD "S" factors were compared with the average values derived from the heterogenous distribution of activity in the skeleton (i.e., the regional technique). The results from the two techniques were significantly different; the average of the dose estimates from the regional technique were typically 30% greater. Furthermore, the regional technique provided a range of radiation doses for the entire marrow volume, while the MIRD "S" factors only provided a single value. Dose volume histogram analysis of data from the regional technique indicated a range of dose estimates that varied by a factor of 10 between the high dose and low dose regions. Finally, the observed clinical response of cells and abnormal proteins measured in bone marrow aspirates and peripheral blood samples were compared with radiation dose estimates for the bone marrow calculated from the standard and regional technique. The results showed the regional technique values correlated more closely to several clinical response parameters. (Abstract shortened by UMI.) ^
Resumo:
Gut was studied as a prototypical mucosal membrane in the murine BDF-1 syngeneic bone marrow transplant model. Measures of jejunal intraepithelial lymphocytes (IELs) and crypt cells were obtained by standard techniques and a method of quantifying gut lamina propria plasma cells (PCs) was developed. The degree of ablation of gut PCs and IELs after 900 rads total body irradiation with ('60)Co, and their repopulation effected by transplantation with 2.0 x 10('5) or 1.0 x 10('6) bone marrow cells demonstrated a prolonged period of profound depression in population levels of these cells which was not reflected by the extent of damage sustained to the epithelium. Differences in the depopulation and recovery of gut PCs and IELs revealed a tendency towards initial differentiation of effector cells. A positive dose response to high bone marrow cell innocula was obtained. Subsequent studies determined that gut IEL and PC repopulation was potentiated by the addition of IELs or buffy coat cells (BCs) to the bone marrow transplant. A method of isolating 1.4 - 4.0 x 10('7) viable IELs per gram of murine small bowel was devised employing intralumenal hyaluronidase digestion of the epithelial layer and centrifugation of the resulting suspension through discontinuous Percoll gradients. Irradiated mice received 2.0 x 10('5) bone marrow cells along with an equal number of IELs or BCs. The extent and duration of depression of numbers of IELs and PCs was markedly reduced by the addition of the IEL isolate to the transplantation innocula, and to a lesser degree by the addition of BCs. The augmentation of repopuation far exceeded that expected by simple lodging of cells suggesting that the additionally transplanted cells contained a subpopulation of mucosal membrane lymphoid stem cells or helper cells. Correlation analysis of PC versus IEL levels suggests a possible feedback mechanism governing the relative size of their populations. Normal ratios of IgA, IgM, and IgG bearing PCs was maintained post transplantation with all of the regimens. ^
Resumo:
Allogeneic bone marrow transplantation (BMT) is known to induce a beneficial anti-tumor immune response called graft-versus-tumor (GVT) activity. However, GVT activity is closely associated with graft-versus-host disease (GVHD), a potentially fatal immune response against antigens on normal recipient tissues. The T-cell populations mediating these two processes are often overlapping, but studies have shown that some donor T-cells can be tumor-specific. Therefore, the goal of this study was to develop strategies for preferentially activating donor T-cells capable of mediating GVT activity but not GVHD. The three hypotheses tested were: (1) Pre-transplant immunization of BMT donors with a recipient-derived tumor cell vaccine will induce a relative increase in GVT activity as compared to GVHD. (2) Post-transplant tumor immunization of BMT recipients will enhance GVT activity without exacerbating GVHD. (3) Pre-transplant immunization of BMT donors against a tumor-specific antigen will enhance GVT activity without exacerbating GVHD. ^ To test the first two hypotheses, C3H.SW mice (MHC-matched donors) were immunized with a C57BL/6 (recipient)-derived tumor cell vaccine (leukemia or fibrosarcoma) prior to BMT, or recipients were immunized starting one month after BMT. Both donor and recipient immunization led to a significant increase in GVT activity (enhanced recipient survival and decreased tumor growth). However, donor immunization also increased fatal GVHD, which was at least partially due to activation of alloreactive T-cells recognizing the immunodominant minor histocompatibility antigen B6dom1. GVT immunity following recipient immunization was not associated with an exacerbation of GVHD or a response to B6dom1. ^ To test the third hypothesis, influenza nucleoprotein (NP) was used as a model tumor antigen. C3H.SW donors were immunized against NP prior to BMT, which led to a significant increase in GVT activity. Although recipients were not completely protected against growth of antigen loss variant tumors, there was no increase in GVHD. ^ In conclusion, (1) immunization of allogeneic BMT donors with a recipient-derived tumor cell vaccine substantially increases GVT activity but also exacerbates GVHD, (2) post-transplant tumor immunization of allogeneic BMT recipients significantly increases GVT activity and survival without exacerbating GVHD, and (3) immunization of allogeneic BMT donors against a tumor-specific antigen significantly enhances GVT activity without exacerbating GVHD. ^