41 resultados para bladder tumors
em DigitalCommons@The Texas Medical Center
Resumo:
p63, a p53 family member, is a transcription factor that has complex roles in cancer. This study focuses on the role of the ∆Np63α isoform in bladder cancer (BC). Epithelial – mesenchymal transition (EMT) is a physiological process that plays an important part in metastasis and drug resistance. At the molecular level, EMT is characterized by the loss of the epithelial marker E-cadherin, and the acquisition of the transcriptional repressors of E-cadherin (ZEB1, ZEB2, TWIST, SNAI1 and SNAI2). Recent publications highlight the role of microRNAs belonging to the miR-200 family and miR-205 in preventing EMT through suppression of ZEB1 and ZEB2. p53, the homologue of p63, is implicated in regulating EMT by modulating the expression of miR-200c; however, the mechanisms underlying miR-205 control remain unclear. Here we show that ∆Np63α regulates the transcription of miR-205 and controls EMT in human BC cells. We observed a strong correlation between the expression of ∆Np63α, miR-205 and E-cadherin in a panel of BC cell lines (n=28) and also in bladder primary tumors from a cohort of patients (n=98). A remarkably inverse correlation is observed between ∆Np63α and ZEB1/2 in cell lines. Stable knockdown (KD) ∆Np63α in UC6, an “epithelial” BC cell line, decreased the expression of miR-205 and induced ZEB1/2 expression, the effects that were reversed by expression of exogenous miR-205. Moreover, overexpressing ∆Np63α in UC3, a “messenchymal” BC cell line, brought about opposite results, an increase in miR-205 expression and a reduction in ZEB1/2 expression. Modulation of ∆Np63α expression resulted in a parallel change in the expression of miR-205 and miR-205 “host” gene (miR-205HG). Nuclear run-on and chromatin immunoprecipitation experiments demonstrated that ∆Np63α regulates the transcription of miR-205 through controlling the recruitment of RNA Polymerase II to the promoter of miR-205HG. Interestingly, high miR-205 expression correlated with poor clinical outcome in BC patients, consistent with our recent publication highlighting the enrichment of ∆Np63 in a lethal subset of muscle invasive BC. In summary, our data present the important roles of ∆Np63α in preventing EMT mediated by miR-205. Our study also identifies miR-205 as a potential molecular marker to predict clinical outcome in BC patients.
Resumo:
Medulloblastoma, one of the most malignant brain tumors in children, is thought to arise from undifferentiated neural stem/progenitor cells (NSCs) present in the external granule layer of the cerebellum. However, the mechanism of tumorigenesis remains unknown for the majority of medulloblastomas. In this study, we found that many human medulloblastomas express significantly elevated levels of both myc oncogenes, regulators of neural progenitor proliferation, and REST/NRSF, a transcriptional repressor of neuronal differentiation genes. Previous studies have shown that neither c-Myc nor REST/NRSF alone could cause tumor formation. To determine whether c-Myc and REST/NRSF act together to cause medulloblastomas, we used a previously established cell line derived from external granule layer stem cells transduced with activated c-myc (NSC-M). These immortalized NSCs were able to differentiate into neurons in vitro. In contrast, when the cells were engineered to express a doxycycline-regulated REST/NRSF transgene (NSC-M-R), they no longer underwent terminal neuronal differentiation in vitro. When injected into intracranial locations in mice, the NSC-M cells did not form tumors either in the cerebellum or in the cerebral cortex. In contrast, the NSC-M-R cells did produce tumors in the cerebellum, the site of human medulloblastoma formation, but not when injected into the cerebral cortex. Furthermore, the NSC-M-R tumors were blocked from terminal neuronal differentiation. In addition, countering REST/NRSF function blocked the tumorigenic potential of NSC-M-R cells. To our knowledge, this is the first study in which abnormal expression of a sequence-specific DNA-binding transcriptional repressor has been shown to contribute directly to brain tumor formation. Our findings indicate that abnormal expression of REST/NRSF and Myc in NSCs causes cerebellum-specific tumors by blocking neuronal differentiation and thus maintaining the "stemness" of these cells. Furthermore, these results suggest that such a mechanism plays a role in the formation of human medulloblastoma.
Resumo:
Epstein-Barr virus (EBV) - associated smooth muscle tumors (EBV-SMT) are a rare, recently recognized distinct group of mesenchymal tumors that develop exclusively in patients with immunosuppression. It is believed that tumorigenesis is, at least in part, through the activation of the Akt/mammalian target of rapamycin (mTOR) signal pathway. We describe the clinicopathologic and immunohistochemical features of a multifocal hepatic EBV-SMT in a 34-year-old acquired immunodeficiency syndrome (AIDS) patient and investigate the activation status of the mTOR signal pathway in this tumor. In addition, we provide a review of the literature on the clinicopathologic findings of hepatic EBV-SMT in adult AIDS patients, and discuss their biologies and possible therapeutic strategies.
Resumo:
I have undertaken measurements of the genetic (or inherited) and nongenetic (or noninherited) components of the variability of metastasis formation and tumor diameter doubling time in more than 100 metastatic lines from each of three murine tumors (sarcoma SANH, sarcoma SA4020, and hepatocarcinoma HCA-I) syngeneic to C3Hf/Kam mice. These lines were isolated twice from lung metastases and analysed immediately thereafter to obtain the variance to spontaneous lung metastasis and tumor diameter doubling time. Additional studies utilized cells obtained from within 4 passages of isolation. Under the assumption that no genetic differences in metastasis formation or diameter doubling time existed among the cells of a given line, the variance within a line would estimate nongenetic variation. The variability derived from differences between lines would represent genetic origin. The estimates of the genetic contribution to the variation of metastasis and tumor diameter doubling time were significantly greater than zero, but only in the metastatic lines of tumor SANH was genetic variation the major source of metastatic variability (contributing 53% of the variability). In the tumor cell lines of SA4020 and HCA-I, however, the contribution of nongenetic factors predominated over genetic factors in the variability of the number of metastasis and tumor diameter doubling time. A number of other parameters examined, such as DNA content, karyotype, and selection and variance analysis with passage in vivo, indicated that genetic differences existed within the cell lines and that these differences were probably created by genetic instability. The mean metastatic propensity of the lines may have increased somewhat during their isolation and isotransplantation, but the variance was only slightly affected, if at all. Analysis of the DNA profiles of the metastatic lines of SA4020 and HCA-I revealed differences between these lines and their primary parent tumors, but not among the SANH lines and their parent tumor. Furthermore, there was a direct correlation between the extent of genetic influence on metastasis formation and the ability of the tumor cells to develop resistance to cisplatinum. Thus although nongenetic factors might predominate in contributing to metastasis formation, it is probably genetic variation and genetic instability that cause the progression of tumor cells to a more metastatic phenotype and leads to the emergence of drug resistance. ^
Resumo:
The proportional distribution of independent malignant tumors in the contralateral breast following treatment for breast cancer was investigated to assess the influence of scattered radiation as a cause of these tumors. In a population of 172 patients the proportion of contralateral tumors in each quadrant and the center (the nipple-areolar complex) was compared with the expected, or natural, distribution found in the general population, in the absence of radiation. The observed/expected ratio for contralateral tumors was 1.43 for the upper-inner quadrant; 0.97, lower-inner quadrant; 1.51, center; 0.76, upper-outer quadrant; and 0.64, lower-outer quadrant. In each quadrant, except the lower-inner, the observed/expected ratio differed from 1.00 with statistical significance at the 5% level (one-tail). The same analysis, stratified by age and menopausal status, showed a similar shift of tumors, with more than expected in the inner quadrants and center and less than expected in the outer quadrants, although the results did not show statistical significance at the 5% level for all strata. For each patient the mean absorbed radiation dose for each quadrant and center of the breast was estimated, based on measurements in a tissue-equivalent phantom. Among patients the doses ranged from 0.5 to 8 Gy; within individuals, doses to the inner quadrants typically were a factor of three times higher than doses to the outer quadrants. The results suggest that radiation may be a risk factor for contralateral breast tumors and warrants further investigation. ^
Resumo:
Von Hippel-Lindau (VHL) disease is an autosomal dominant disorder characterized by the development of retinal and central nervous system hemangioblastoma, renal cell carcinoma (RCC), pheochromocytoma and pancreatic islet cell tumors (PICT). The VHL gene maps to chromosome 3p25 and has been shown to be mutated in 57% of sporadic cases of RCC, implicating VHL in the genesis of RCC. We report a multigeneration VHL kindred in which four affected female siblings developed PICT at early ages. Analysis of the three coding exons of the VHL gene in this family revealed a single, missense mutation in codon 238. Inheritance of the 238 mutation has been reported to correlate with a 62% risk of pheochromocytoma development. In this kindred, all affected individuals carried the mutation as well as one additional sibling who showed no evidence of disease. Clinical screening of this individual indicated small ($<$1 cm) pancreatic and kidney tumors. Results suggest that inheritance of the codon 238 mutation does not correlate with early onset pheochromocytoma. Rather, the only individual in the pedigree with pheochromocytoma was the proband's mother who developed bilateral pheochromocytoma at the age of 62. Thus, the VHL codon 238 mutation may predispose to late onset pheochromocytoma in this family; however, it does not explain the preponderance of PICT in the third generation since this mutation has not been reported to increase the risk of developing pancreatic lesions. This suggests that inheritance of the codon 238 mutation and subsequent somatic inactivation of the wild type allele of the VHL gene may not be sufficient to explain the initiation and subsequent progression to malignancy in VHL-associated neoplasms. Since the two tumor types that most frequently progress to malignancy are RCC and PICT, we asked whether loss of heterozygosity (LOH) could be detected proximal to the VHL gene on chromosome 3 in distinct regions of 3p previously implicated by LOH and cytogenetic studies to contain tumor suppressor loci for RCC. LOH was performed on high molecular weight DNA isolated from peripheral blood and frozen tumor tissue of family members using microsatellite markers spanning 3p. Results indicated LOH for all informative 3p loci in tumor tissue from affected individuals with PICT. LOH was detected along the entire length of the chromosome arm and included the proximal region of 3p13-14.2 implicated in the hereditary form of renal cell carcinoma.^ If 3p LOH were a critical event in pancreatic islet cell tumorigenesis, then it should be expected that LOH in sporadic islet cell tumors would also be observed. We expanded LOH studies to include sporadic cases of PICT. Consistent LOH was observed on 3p with a highest frequency LOH in the region 3p21.2. This is the first evidence for an association between chromosome 3 loci and pancreatic islet cell tumorigenesis. (Abstract shortened by UMI.) ^
Resumo:
Wilms tumor (WT) is an embryonal renal tumor with a heterogeneous genetic etiology that serves as a valuable model for studying tumorigenesis. Biallelic inactivation of the tumor suppressor gene WT1, a zinc-finger transcriptional regulator located at 11p13, is critical for the development of some Wilms tumors. Interestingly, WT1 genomic analysis has demonstrated mutations in less than 20% of WT cases. This suggests either other genes play a more major role in Wilms tumorigenesis or WT1 is functionally altered by mechanisms other than DNA mutation. Previous observations in rat and in WT xenograft cell lines have suggested that abnormal WT1 RNA processing (exon 6 RNA editing and aberrant exon 2 splicing, respectively) is a potential mechanism of altering WT1 function in the absence of a WT1 DNA mutation. However, the role of this abnormal RNA processing has not previously been assessed in primary Wilms tumors. ^ To test the hypothesis that abnormal WT1 RNA processing is a mechanism of WT1alteration during tumor development, WT1 RNA from 85 primary tumors was analyzed using reverse transcription and polymerase chain reaction amplification (RT-PCR). Although no evidence for WT1 RNA editing was observed, variable levels (5% to 50%) of aberrant WT1 exon 2 splicing were detected for 11 tumors in the absence of a detectable WT1 DNA mutation. Also, alteration of normal WT1 alternative splicing, observed as RNA isoform loss, was detected in five tumors with no apparent WT1 genomic alteration, although no consistent pattern of RNA isoform loss was detected. This abnormal WT1 splicing, detected by either loss of exon 2 from some of the transcripts or loss of RNA isoforms, is statistically correlated with relapse (p = 0.005). These studies demonstrate that abnormal WT1 RNA processing is not a common mechanism of abrogating normal WT1 function in primary tumors. However, in those cases in which abnormal WTI splicing is present, these data indicate that it may serve as a useful prognostic marker for relapse in WT patients. ^
Resumo:
Epidemiologic case-control studies of small groups of childhood nervous system tumor patients have suggested that parental employment in occupations with exposure to hydrocarbons is a risk factor for disease. The main focus of this case-control study was to assess the paternal occupation at the time of birth of offspring who later developed childhood intracranial and spinal tumors. All children under 15 years of age dying of such tumors in Texas, during the period 1964-1980, were selected as cases. Disease and demographic data were abstracted from death certificates. The birth certificate for each child of the final group of 499 cases was located and parental occupation information, as well as demographic and obstetric data, were collected. The comparison group consisted of a random sample from all Texas live births with the same birth year, race and sex distribution as the cases.^ The paternal occupations were categorized into broad classifications of those involving hydrocarbon exposure versus those that did not, based on the occupation criteria used in the previous studies. Odds ratios did not indicate any increased risk associated with general paternal hydrocarbon exposure in the workplace. In prior studies, increased risk estimates were detected with narrower groups of occupations involving exposure to hydrocarbon materials. The data from this study were classified according to these groups, and again, no increased risks were indicated except for a statistically insignificant but elevated odds ratio for fathers who were paper and pulp mill workers.^ Odds ratios were calculated for specific occupations and industries previously implicated as risk factors. Significantly associated odds ratios (OR) were detected for electricians (OR = 3.5), especially those working for construction companies (OR = 10.0), for employment in the printing occupations (OR = 4.5), particularly graphic arts workers (OR = 21.9), and in the electronics and electronic machinery industries (OR = 3.5). Analysis of the petroleum refining and chemical industries, which were not found in previous study populations, revealed significantly elevated odds ratios of 3.0 for occupations with probable heavy exposure to chemicals and petroleum compounds and 10.0 for salesmen of chemical products. ^
Resumo:
The hydroxylation of N- and O-methyl drugs and a polycyclic hydrocarbon has been demonstrated in microsomes prepared from two transplantable Morris hepatomas (i.e., 7288C. t.c. and 5123 t.c.(H). The hydroxylation rates of the drug benzphetamine and the polycyclic hydrocarbon benzo {(alpha)} pyrene by tumor microsomes were inducible 2 to 3-fold and 2-fold, respectively by pretreatment of rats with phenobarbital/hydrocortisone. Hepatoma 5123t.c.(h) microsomal hydroxylation activities were more inducible after these pretreatments than hepatoma 7288C.t.c. Two chemotherapeutic drugs (cyclophosphamide and isophosphamide) were shown to be mutagenic after activation by the tumor hemogenate with the TA100 strain of Salmonella typhimurium bacteria. NADPH-cytochrome P-450 was purified from phenobarbital/hydrocortisone treated rat hepatoma 5123t.c.(H) microsomes 353-fold with a specific activity 63.6 nmol of cytochrome c reduced per min per mg of protein. The purified enzyme, has an apparent molecular weight of 79,500 daltons, and contained an equal molar ratio of FMN and FAD, with a total flavin content of 16.4 nmol per mg of protein. The purified enzyme also catalyzed electron transfer to artificial electron acceptors with the K(,m) values of the hepatoma reductase similar to those of purified liver reductase. The K(,m) value of the hepatoma reductase (13 uM) for NADPH was similar to that of purified liver reductase (5.0 uM). In addition the purified hepatoma reductase was immunochemically similar to the liver reductase.^ Hepatoma cytochrome P-450, the hemeprotein component of the hepatoma microsomes of rats pretreated with phenobarbital/hydrocortisone. The resolution of the six forms was achieved by the DE-53 ion-exchange chromatography, and further purified by hydroxyapatite. The six different fractions that contained P-450 activity, had specific contents from 0.47 to 1.75 nmol of cytochrome P-450 per mg of protein, and indicated a 2 to 9-fold purification as compared to the original microsomes. In addition, difference spectra, molecular weights and immunological results suggest there are at least six different forms of cytochrome P-450 in hepatoma 5123 t.c.(H). ^
Resumo:
The objective of this study was to determine the impact of different follow-up cystoscopy frequencies on time to development of invasive bladder cancer in a cohort of 3,658 eligible patients 65 and older with an initial diagnosis of superficial bladder cancer between 1994 and 1998. Bladder cancer patients in the Surveillance, Epidemiology, and End Results (SEER)-Medicare database were used as the study population. ^ It was hypothesized that superficial bladder cancer patients receiving less frequent cystoscopy follow-up would develop invasive bladder cancer sooner after initial diagnosis and treatment than patients seen more frequently for cystoscopy follow-up. Cox Proportional Hazard Regression revealed that patients seen for cystoscopy every 3 or more months were 83–89% less likely to develop invasive cancer than patients seen every 1 to 2 months. A comparison of the 2 groups (1 to 2 months vs. 3≥ months) revealed that the 1 to 2 month group may have had more aggressive disease, and they are seen more frequently as a result. ^ These findings suggest that there are two groups of superficial bladder cancer patients: those at high risk of developing invasive bladder cancer and those at low risk. Patients who developed invasive bladder cancer sooner after initial diagnosis and treatment were seen more frequently for cystoscopy follow-up. The recommendation is that cystoscopy should be based on disease status at 3 months. Standardized schedules give all patients the same number of cystoscopies regardless of their risk factors. This could lead to unnecessary cystoscopies in low risk patients, and fewer than optimal cystoscopies in high risk patients. ^
Resumo:
Although tobacco exposure remains the prevailing risk factor for bladder cancer (BC), only a small percentage of exposed individuals develop cancer, suggesting that tobacco-related carcinogenesis is modulated by genetic susceptibility and possibly by DNA methylation-related events. Methylation patterns established by DNA methyltransferases (DNMTs) are influenced by dietary folate and genetic polymorphisms in the methylene-tetrahydrofolate reductase gene (MTHFR). Therefore, we hypothesized that DNA methylation-related genes, such as DNMT3B and MTHFR, might modulate BC risk. ^ In a study of 514 Caucasian BC cases and 498 healthy Caucasian controls examining the DNMT3B C46359T polymorphism, CC genotype was found to be a risk factor in women (Odds Ratio (OR) = 1.79), but not in men. This risk was further increased among women who were never smokers, consumed low dietary folate, and had adverse variants of MTHFR. In addition, higher DNMT3B expression among smokers was a risk factor (OR = 4.27) and correlated with genetic variants of the DNMT3B C46359T polymorphism, providing salient evidence for the risk associated with the CC variant. This suggests that the DNMT3B CC variant may confer a predisposition toward aberrant de novo methylation of CpG islands in critical tumor suppressor genes. ^ The convergence of alterations in DNMT3B, associated with promoter methylation, and reduced dietary folate consumption, accompanying global hypomethylation and genetic instability, may act synergistically to promote bladder carcinogenesis, especially in women. The results of this study unveiled new gender-specific paradigms of BC risk for women and demonstrated that this risk can be modified by folate consumption as well as polymorphisms in the folate pathway. ^
Resumo:
Background. The rise in survival rates along with more detailed follow-up using sophisticated imaging studies among non-small lung cancer (NSCLC) patients has led to an increased risk of second primary tumors (SPT) among these cases. Population and hospital based studies of lung cancer patients treated between 1974 and 1996 have found an increasing risk over time for the development of all cancers following treatment of non-small cell lung cancer (NSCLC). During this time the primary modalities for treatment were surgery alone, radiation alone, surgery and post-operative radiation therapy, or combinations of chemotherapy and radiation (sequentially or concurrently). There is limited information in the literature about the impact of treatment modalities on the development of second primary tumors in these patients. ^ Purpose. To investigate the impact of treatment modalities on the risk of second primary tumors in patients receiving treatment with curative intent for non-metastatic (Stage I–III) non-small cell lung cancer (NSCLC). ^ Methods. The hospital records of 1,095 NSCLC patients who were diagnosed between 1980–2001 and received treatment with curative intent at M.D. Anderson Cancer Center with surgery alone, radiation alone (with a minimum total radiation dose of at least 45Gy), surgery and post-operative radiation therapy, radiation therapy in combination with chemotherapy or surgery in combination with chemotherapy and radiation were retrospectively reviewed. A second primary malignancy was be defined as any tumor histologically different from the initial cancer, or of another anatomic location, or a tumor of the same location and histology as the initial tumor having an interval between cancers of at least five years. Only primary tumors occurring after treatment for NSCLC will qualified as second primary tumors for this study. ^ Results. The incidence of second primary tumor was 3.3%/year and the rate increased over time following treatment. The type of NSCLC treatment was not found to have a striking effect upon SPT development. Increased rates were observed in the radiation only and chemotherapy plus radiation treatment groups; but, these increases did not exceed expected random variation. Higher radiation treatment dose, patient age and weight loss prior to index NSCLC treatment were associated with higher SPT development. ^
Resumo:
Tumor necrosis factor-related apoptosis-inducing ligand (Apo2L/TRAIL) is a member of the TNF superfamily of cytokines that can induce cell death through engagement of cognate death receptors. Unlike other death receptor ligands, it selectively kills tumor cells while sparing normal cells. Preclinical studies in non-human primates have generated much enthusiasm regarding its therapeutic potential. However, many human cancer cell lines exhibit significant resistance to TRAIL-induced apoptosis, and the molecular mechanisms underling this are controversial. Possible explanations are typically cell-type dependent, but include alterations of receptor expression, enhancement of pro-apoptotic intracellular signaling molecules, and reductions in anti-apoptotic proteins. We show here that the proteasome inhibitor bortezomib (Velcade, PS-341) produces synergistic apoptosis in both bladder and prostate cancer cell lines within 4-6 hours when co-treated with recombinant human TRAIL which is associated with accumulation of p21 and cdk1/2 inhibition. Our data suggest that bortezomib's mechanism of action involves a p21-dependent enhancement of caspase maturation. Furthermore, we found enhanced tumor cell death in in vivo models using athymic nude mice. This is associated with increases in caspase-8 and caspase-3 cleavage as well as significant reductions in microvessel density (MVD) and proliferation. Although TRAIL alone had less of an effect, its biological significance as a single agent requires further investigations. Toxicity studies reveal that the combination of bortezomib and rhTRAIL has fatal consequences that can be circumvented by altering treatment schedules. Based on our findings, we conclude that this strategy has significant therapeutic potential as an anti-cancer agent. ^
Resumo:
The epidermal growth factor receptor (EGFR) and its ligands are overexpressed in many human tumors, including bladder and pancreas, correlating with a more aggressive tumor phenotype and poor patient prognosis. We initiated the present study to characterize the heterogeneity of gefitinib responsiveness in a panel of human bladder and pancreatic cancer cell lines in order to identify the biological characteristics of EGFR-dependent proliferation that could be used to prospectively identify drug-sensitive tumors. A second objective was to elucidate how to best exploit these results by utilizing gefitinib in combination therapy. To these ends, we examined the effects of the EGFR antagonist gefitinib on proliferation and apoptosis in a panel of 18 human bladder cancer cell lines and 9 human pancreatic cancer cell lines. Our data confirmed the existence of marked heterogeneity in Iressa responsiveness with less than half of the cell lines displaying significant growth inhibition by clinically relevant concentrations of the drug. Gefitinib responsiveness was found to be p27 kip1 dependent as DNA synthesis was restored following exposure to p27siRNA. Unfortunately, Iressa responsiveness was not closely linked to surface EGFR or TGF-α expression in the bladder cancer cells, however, cellular TGF-α expression correlated directly with Iressa sensitivity in the pancreatic cancer cell lines. These findings provide the potential for prospectively identifying patients with drug-sensitive tumors. ^ Further studies aimed at exploiting gefitinib-mediated cell cycle effects led us to investigate if gefitinib-mediated TRAIL sensitization correlated with increased p27kip1 accumulation. We observed that increased TRAIL sensitivity following gefitinib exposure was not dependent on p27 kip1 expression. Additional studies initiated to examine the role(s) of Akt and Erk signaling demonstrated that exposure to PI3K or MEK inhibitors significantly enhanced TRAIL-induced apoptosis at concentrations that block target phosphorylation. Furthermore, combinations of TRAIL and the PI3K or MEK inhibitors increased procaspase-8 processing above levels observed with TRAIL alone, indicating that the effects were exerted at the level of caspase-8 activation, considered the earliest step in the TRAIL pathway. ^