5 resultados para bile duct obstruction
em DigitalCommons@The Texas Medical Center
Resumo:
The injurious effect of nonsteroidal anti-inflammatory drugs (NSAIDs) in the small intestine was not appreciated until the widespread use of capsule endoscopy. Animal studies found that NSAID-induced small intestinal injury depends on the ability of these drugs to be secreted into the bile. Because the individual toxicity of amphiphilic bile acids and NSAIDs directly correlates with their interactions with phospholipid membranes, we propose that the presence of both NSAIDs and bile acids alters their individual physicochemical properties and enhances the disruptive effect on cell membranes and overall cytotoxicity. We utilized in vitro gastric AGS and intestinal IEC-6 cells and found that combinations of bile acid, deoxycholic acid (DC), taurodeoxycholic acid, glycodeoxycholic acid, and the NSAID indomethacin (Indo) significantly increased cell plasma membrane permeability and became more cytotoxic than these agents alone. We confirmed this finding by measuring liposome permeability and intramembrane packing in synthetic model membranes exposed to DC, Indo, or combinations of both agents. By measuring physicochemical parameters, such as fluorescence resonance energy transfer and membrane surface charge, we found that Indo associated with phosphatidylcholine and promoted the molecular aggregation of DC and potential formation of larger and isolated bile acid complexes within either biomembranes or bile acid-lipid mixed micelles, which leads to membrane disruption. In this study, we demonstrated increased cytotoxicity of combinations of bile acid and NSAID and provided a molecular mechanism for the observed toxicity. This mechanism potentially contributes to the NSAID-induced injury in the small bowel.
Resumo:
Mineralocorticoids (DOCA) are known to increase Na('+) absorption and K('+) secretion in the rabbit cortical collecting duct (CCD). However, the mechanism of regulation of the apical and basolateral cell membranes and tight junction ion conductive pathways (G('a), G('b), and G('tj), respectively) by mineralocorticoids are only partially understood. Using electrophysiological techniques and microelectrodes it was demonstrated that the apical cell membrane contained a dominant Ba('2+) sensitive K('+) conductive pathway, G(,K)('a), and an amiloride sensitive Na('+) conductive pathway, G(,Na)('a). The basolateral membrane contained a dominant Cl('-) conductive pathway, G(,Cl)('b), and a significant Ba('2+) sensitive K('+) conductive pathway, G(,K)('b). Upon elevating the mineralocorticoid levels of rabbits with intact adrenal glands it was found that V('te) was significantly increased after 1 day with a further increase after 13-16 days. These results indicated both primary and secondary effects of mineralocorticoid elevation. After 1 day of DOCA treatment, G(,Na)('a), I(,Na)('a) and I(,K)('a) increased by more than 2-fold and were maintained at high levels after 13-16 days of DOCA treatment. Secondary (chronic) effects of mineralocorticoids were evident after 4 days or more of DOCA treatment. These included a significant increase in G(,K)('a) from 4.0 to 10.2 mS.cm('-2) and a hyperpolarization of V('b) by -20 mV after 4 days of treatment. After 13-16 days of DOCA treatment V('b) remained hyperpolarized at -98.1 mV and G('tj) decreased from 5.6 to 4.2 mS.cm('-2). The hyperpolarization of V('b) was due to an increase in electrogenic Na('+) pump activity as the pump current, I(,act)('b), increased significantly from 35.7 to 195.2 (mu)A.cm('-2). Whereas net passive K('+) current across the basolateral membrane, I(,K)('b), was near zero in the control group of animals, i.e., K('+) near equilibrium, I(,K)('b) was approximately -40 (mu)A.cm('-2) in chronic DOCA treated animals. These results demonstrate that the initial effect of mineralocorticoid elevation is to increase G(,Na)('a). The ensuing depolarization of the apical membrane increases the driving force for K('+) exit into the lumen. Between 1 and 4 days of elevation, G(,K)('a) more than doubles in magnitude and at the same time the electrogenic activity of the Na('+) pump increases. This results in a hyperpolarization of V('b) which increases the driving force for K('+) uptake from the bath to the cell through a basolateral membrane conductive pathway. After 13-16 days G('tj) decreases thereby serving to maintain high electrochemical gradients across the epithelium. Therefore, the long term effects of mineralocorticoid elevation on the CCD appear to be adaptive mechanisms that serve to maintain high levels of K('+) secretion and Na('+) absorption. ^
Resumo:
Left ventricular outflow tract (LVOT) defects are an important group of congenital heart defects (CHDs) because of their associated mortality and long-term complications. LVOT defects include aortic valve stenosis (AVS), coarctation of aorta (CoA), and hypoplastic left heart syndrome (HLHS). Despite their clinical significance, their etiology is not completely understood. Even though the individual component phenotypes (AVS, CoA, and HLHS) may have different etiologies, they are often "lumped" together in epidemiological studies. Though "lumping" of component phenotypes may improve the power to detect associations, it may also lead to ambiguous findings if these defects are etiologically distinct. This is due to potential for effect heterogeneity across component phenotypes. ^ This study had two aims: (1) to identify the association between various risk factors and both the component (i.e., split) and composite (i.e., lumped) LVOT phenotypes, and (2) to assess the effect heterogeneity of risk factors across component phenotypes of LVOT defects. ^ This study was a secondary data analysis. Primary data were obtained from the Texas Birth Defect Registry (TBDR). TBDR uses an active surveillance method to ascertain birth defects in Texas. All cases of non complex LVOT defects which met our inclusion criteria during the period of 2002–2008 were included in the study. The comparison groups included all unaffected live births for the same period (2002–2008). Data from vital statistics were used to evaluate associations. Statistical associations between selected risk factors and LVOT defects was determined by calculating crude and adjusted prevalence ratio using Poisson regression analysis. Effect heterogeneity was evaluated using polytomous logistic regression. ^ There were a total of 2,353 cases of LVOT defects among 2,730,035 live births during the study period. There were a total of 1,311 definite cases of non-complex LVOT defects for analysis after excluding "complex" cardiac cases and cases associated with syndromes (n=168). Among infant characteristics, males were at a significantly higher risk of developing LVOT defects compared to females. Among maternal characteristics, significant associations were seen with maternal age > 40 years (compared to maternal age 20–24 years) and maternal residence in Texas-Mexico border (compared to non-border residence). Among birth characteristics, significant associations were seen with preterm birth and small for gestation age LVOT defects. ^ When evaluating effect heterogeneity, the following variables had significantly different effects among the component LVOT defect phenotypes: infant sex, plurality, maternal age, maternal race/ethnicity, and Texas-Mexico border residence. ^ This study found significant associations between various demographic factors and LVOT defects. While many findings from this study were consistent with results from previous studies, we also identified new factors associated with LVOT defects. Additionally, this study was the first to assess effect heterogeneity across LVOT defect component phenotypes. These findings contribute to a growing body of literature on characteristics associated with LVOT defects. ^