14 resultados para beta 2-integrin
em DigitalCommons@The Texas Medical Center
Resumo:
Metastasis is the major cause of death in cancer patients. Since many cancers show organ-preference of metastasis, elucidation of the underlying mechanisms of metastasis will benefit diagnosis or treatment of metastatic diseases. Adhesion mechanisms are thought to be involved in organ-preference of metastasis, because metastatic cells show organ preference in adhering to organ-derived microvascular endothelial cells. The adhesion molecules in this process remain largely unidentified. I have examined a series of murine RAW117 large-cell lymphoma cells variants selected in vivo for liver-colonizing properties ($\rm{H10{>>}L17>P}$). The highly liver-metastatic H10 cells were found to differentially express much higher levels of integrin $\alpha\rm\sb{v}\beta\sb3$ than L17 or P cells. H10 cells also adhered at higher rates to vitronectin and fibronectin than to fibrinogen, fibrin, laminin and type I collagen, and adhered at significantly higher rates to (GRGDS)$\sb4$ than to monomeric RGD-peptides. In contrast, P and L17 cells did not adhere well to the above substrates. H10 cells also spread well on vitronectin and migrated toward vitronectin concentration gradients. Pretreament of H10 cells with anti-$\beta\sb3$ monoclonal antibodies resulted in significant decreases in adhesion of H10 cells to vitronectin and immobilized (GRGDS)$\sb4$, and reduced the formation of experimental liver metastases in syngeneic Balb/c mice.^ Adhesion of RAW117 cells under hydrodynamic shear stresses was also studied because tumor cell adhesion occurs under fluid shear stresses in target organ microvessels. Similar to their properties found with static adhesion assays, H10 cells stabilized their hydrodynamic adhesion to vitronectin, fibronectin and (GRGDS)$\sb4$ much more quickly than P or L17 cells. Unlike their static adhesion properties, RAW117 cells showed differential adhesion stabilization to liver-sinusoidal endothelial cell-derived extracellular matrix ($\rm{H10{>>}L17>P}$). Although not supporting static adhesion of RAW117 cells, monomeric RGD-peptides mediated adhesion stabilization of H10 cells but not L17 or P cells. Integrin $\rm\alpha\sb{v}\beta\sb3$ was found to be involved in stabilizing H10 cell adhesion to vitronectin, (GRGDS)$\sb4$, monomeric RGD-peptide R1, and liver sinusoidal endothelial cell-derived extracellular matrix.^ This study is the first to provide evidence that integrin $\rm\alpha\sb{v}\beta\sb3$ is differentially expressed in liver-metastatic lymphoma cells and involved in differential adhesion of these cells. The results indicate that strong static adhesion and especially the unique hydrodynamic adhesion of RAW117 cells to the RGD-containing substrates correlate with liver-metastatic potentials. Thus, integrin $\rm\alpha\sb{v}\beta\sb3$ may play an important role in liver-preferential metastasis of RAW117 large-cell lymphoma cells. ^
Resumo:
Neurogenesis in the adult mouse brain occurs within the subventricular zone (SVZ) of the lateral ventricle. In the SVZ, neural stem cells (NSC) reside in a specialized microenvironment, or vascular niche, consisting of blood vessels and their basement membranes. Most NSCs in the SVZ differentiate into progenitor cells, which further differentiate to generate neuroblasts, which then migrate from the SVZ to the olfactory bulbs (OB) along the rostral migratory stream (RMS). ECM-mediated adhesion and signaling within the vascular niche likely contribute to proper NSC self-renewal, survival, differentiation and neuroblast motility. The mechanisms that control these events are poorly understood. Previous studies from our group and others have shown that loss of the ECM receptor, αvβ8 integrin, in NSCs in the embryonic mouse brain leads to severe developmental vascular defects and premature death. Here, the functions of αvβ8 integrin in the adult brain have been examined using mice that have been genetically manipulated to lack a functional β8 integrin gene. This study reveals that loss of β8 integrin leads to widespread defects in homeostasis of the neurovascular unit, including increased intracerebral blood vessels with enhanced perivascular astrogliosis. Additionally, β8 integrin dependent defects in NSC proliferation, survival, and differentiation, as well as neuroblast migration in the RMS were observed both in vivo and in vitro. The defects correlated, in part, with diminished integrin-mediated activation of TGFβ, an ECM ligand of β8 integrin. Collectively, these data identify important adhesion and signaling functions for β8 integrin in the regulation of neural stem and progenitor cells in the SVZ as well as in neuroblast migration along the RMS in the adult brain.
Resumo:
To initiate our clinical trial for chemotherapy protection, I established the retroviral vector system for human MDR1 cDNA gene transfer. The human MDR1 cDNA continued to be expressed in the transduced bone marrow cells after four cohorts of serial transplants, 17 months after the initial transduction and transplant. In addition, we used this retroviral vector pVMDR1 to transduce human bone marrow and peripheral blood CD34$\sp+$ cells on stromal monolayer in the presence of hematopoietic growth factors. These data suggest that the retroviral vector pVMDR1 could modify hematopoietic precursor cells with a capacity for long-term self renewal. Thus, it may be possible to use the MDR1 retroviruses to confer chemotherapeutic protection on human normal hematopoietic precursor cells of ovarian and breast cancer patients in whom high doses of MDR drugs may be required to control the diseases.^ Another promising vector system is recombinant adeno-associated virus (rAAV) vector. An impediment to use rAAV vectors is that production of rAAV vectors for clinical use is extremely cumbersome and labor intensive. First I set up the rAAV vector system in our laboratory and then, I focused on studies related to the production of rAAV vectors for clinical use. By using a self-inactivating retroviral vector carrying a selection marker under the control of the CMV immediate early promoter and an AAV genome with the deletion of both ITRs, I have developed either a transient or a stable method to produce rAAV vectors. These methods involve infection only and can generate high-titer rAAV vectors (up to 2 x 10$\sp5$ cfu/ml of CVL) with much less work.^ Although recombinant adenoviral vectors hardly infect early hematopoietic precursor cells lacking $\alpha\sb v\beta\sb5$ or $\alpha\sb v\beta\sb3$ integrin on their surface, but efficiently infect other cells, we can use these properties of adenoviral vectors for bone marrow purging as well as for development of new viral vectors such as pseudotyped retroviral vectors and rAAV vectors. Replacement of self-inactivating retroviral vectors by recombinant adenoviral vectors will facilitate the above strategies for production of new viral vectors. In order to accomplish these goals, I developed a new method which is much more efficient than the current methods to construct adenoviral vectors. This method involves a cosmid vector system which is utilized to construct the full-length recombinant adenoviral vectors in vitro.^ First, I developed an efficient and flexible method for in vitro construction of the full-length recombinant adenoviral vectors in the cosmid vector system by use of a three-DNA fragment ligation. Then, this system was improved by use of a two-DNA fragment ligation. The cloning capacity of recombinant adenoviral vectors constructed by this method to develop recombinant adenoviral vectors depends on the efficiency of transfection only. No homologous recombination is required for development of infectious adenoviral vectors. Thus, the efficiency of generating the recombinant adenoviral vectors by the cosmid method reported here was much higher than that by the in vitro direct ligation method or the in vivo homologous recombination method reported before. This method of the in vitro construction of recombinant adenoviral vectors in the cosmid vector system may facilitate the development of adenoviral vector for human gene therapy. (Abstract shortened by UMI.) ^
Resumo:
Integrin adhesion molecules have both positive and negative potential in the regulation of peripheral blood T cell (PB T cell) activation, yet their mechanism of action in the mediation of human T lymphocyte function remains largely undefined. The goals of this study then were to elucidate integrin signaling mechanisms in PB T cells.^ By ligating $\beta$1 integrins with mAb 18D3, it was demonstrated that costimulation of PB T cell proliferation induced by coimmobilizing antibodies specific for $\beta$1, $\beta$2, and $\beta$7 integrin subfamilies in conjunction with the anti-CD3 mAb OKT3 was inhibited. Costimulation of T cell proliferation induced by non-integrins CD4, CD26, CD28, CD44, CD45RA, or CD45RO was unaffected. Inhibition of costimulation correlated with diminished IL-2 production. In his manner, $\beta$1 integrins could regulate heterologous integrins of the $\beta$2 and $\beta$7 subfamilies in a transdominant fashion. It was also demonstrated that integrin costimulation of T cell activation was acutely sensitive to the structural conformation of $\beta$1 integrins. Using the cyclic hexapeptide CWLDVC (TBC772, which is based on the $\alpha4\beta1$ integrin binding site in fibronectin) in soluble form, it was shown that integrins locked into a conformation displaying a neo-epitope called the ligand induced binding site (LIBS) recognized by mAb 15/7 were inhibited from sending mitogenic signals to T cells. When BSA-conjugated TBC772 was coimmobilized with anti-CD3 mAb OKT3, costimulation of proliferation occurred. This suggested that temporally uncoupling integrin receptor occupancy from receptor crosslinking inhibited $\beta$1 integrin signaling mechanisms. When subsets of PB T cells were examined to determine those initially activated by integrins within 6 hours of activation, costimulation induced intracellular accumulation of IL-2 predominantly in the CD4$\sp+$ and CD45RO$\sp+$ T cell subsets. This was similar to a number of PB T cell costimulatory molecules including CD26, CD43, CD44. Only CD28 costimulated IL-2 production from both CD45RA$\sp+$ and CD45RO$\sp+$ subpopulations.^ The GTPase Rho has been implicated in regulating integrin mediated stress fiber formation and anchorage dependent growth in fibroblasts, so studies were initiated to determine if Rho played a role in integrin dependent T cell function. In order to perform this, a technique based on scrape-loading was developed to incorporate macromolecules into PB T cells that maintained their functional activity. With this technique, C3 exoenzyme from Clostridium botulinum was incorporated into PB T cells. C3 ADP-ribosylates Rho proteins on Asn$\sp{41},$ which is in close proximity to the Rho effector domain, rendering it inactive. It was demonstrated that functional Rho is not required for basal or upregulated PB T cell adhesion to $\beta$1 integrin substrates, however PB T cell homotypic aggregation induced by PMA, which is an event mediated predominantly by the integrin $\rm\alpha L\beta2,$ was delayed. PB T cells lacking Rho function displayed altered cell morphology on $\beta$1 integrin ligands, producing stellate, dendritic-like pseudopodia. Rho activity was also found to be required for integrin dependent costimulation of proliferation. When intracellular accumulation of IL-2 was measured, inactivation of Rho prevented both integrin and CD28 costimulatory activity. Rho was identified to lie upstream of signals mediating PKC activation and Ca$\sp{++}$ fluxes, as PMA and ionomycin activation of PB T cells was unaffected by the inactivation of Rho. ^
Resumo:
Vaccines which use the strategy of fusing adjuvant murine â-defensin2 (mBD2) to an antigen in order to elicit stronger anti-antigen immune responses are referred to as murine â-defensin2 (mBD2) vaccines. Previous studies have validated the potential of mBD2 vaccines, thus in this study we focus on increasing vaccine efficacy as well as mechanism elucidation. Initially, we demonstrate superior IFN-ã release levels by antigen specific effector T cells when antigen is crosspresented by dendritic cells (DC) which absorbed mBD2 vaccine (mBD2 fused antigen protein) over antigen alone. We move unto an in vivo model and note significant increases in the expansion of antigen specific class I T cells but not class II T cells when receiving mBD2 vaccine over antigen alone. Further, knowing mBD2’s link with CC chemokine receptor 6 (CCR6) and Toll-like receptor 4 (TLR4) we note that this enhanced class I T cell expansion is CCR6 independent but TLR4 dependent. With anti-tumor responses desired, we demonstrate in tumor protection experiments with mice, compelling tumor protection when combining adoptive T cell therapy and mBD2 vaccine immunization. We further note that mBD2 vaccines are not limited by the antigen and characterize a viable strategy for enhancing tumor antigen immunogenicity.
Resumo:
Prostate cancer is the second leading cause of male cancer-related deaths in the United States. Interestingly, prostate cancer preferentially metastasizes to skeletal tissue. Once in the bone microenvironment, advanced prostate cancer becomes highly resistant to therapeutic modalities. Several factors, such as extracellular matrix (ECM) components, have been implicated in the spread and propagation of prostatic carcinoma. In these studies, we have utilized the PC3 cell line, derived from a human bone metastasis, to investigate the influence of the predominant bone ECM protein, type I collagen, on prostate cancer cell proliferation and gene expression. We have also initiated the design and production of ribozymes to specific gene targets that may influence prostate cancer bone metastasis. ^ Our results demonstrate that PC3 cells rapidly adhere and spread on collagen I to a greater degree than on fibronectin (FN) or poly-L-lysine (PLL). Flow cytometry analysis reveals the presence of the α1, α2 and α3 collagen binding integrin subunits. The use of antibody function blocking studies reveals that PC3 cells can utilize α2β 1 and α3β1 integrins to adhere to collagen I. Once plated on collagen I, the cells exhibit increased rates of proliferation compared with cells plated on FN or tissue culture plastic. Additionally, cells plated on collagen I show increased expression of proteins associated with progression through G1 phase of the cell cycle. Inhibitor studies point to a role for phosphatidylinositol 3-kinase (PI3K), MAP kinase (MAPK), and p70 S6 kinase in collagen I-mediated PC3 cell proliferation and cyclin D1 expression. To further characterize the effect of type I collagen on prostate cancer bone metastasis, we utilized a cDNA microarray strategy to monitor type I collagen-mediated changes in gene expression. Results of this analysis revealed a gene expression profile reflecting the increased proliferation occurring on type I collagen. Microarray analysis also revealed differences in the expression of specific gene targets that may impact on prostate cancer metastasis to bone. ^ As a result of our studies on the interaction of prostate cancer cells and the skeletal ECM, we sought to develop novel molecular tools for future gene therapy of functional knockdown experiments. To this end, we developed a series of ribozymes directed against the α2 integrin and at osteopontin, a protein implicated in the metastasis of various cancers, including prostate. These ribozymes should facilitate the future study of the mechanism of prostate cancer cell proliferation, and disease progression occurring at sites of skeletal metastasis where a type I collagen-based environment predominates. ^ Together these studies demonstrate the involvement of bone ECM proteins on prostate cancer cell proliferation and suggest that they may play a significant role on the growth of prostate metastases once in the bone microenvironment. ^
Resumo:
A retrospective cohort study was conducted among 1542 patients diagnosed with CLL between 1970 and 2001 at the M. D. Anderson Cancer Center (MDACC). Changes in clinical characteristics and the impact of CLL on life expectancy were assessed across three decades (1970–2001) and the role of clinical factors on prognosis of CLL were evaluated among patients diagnosed between 1985 and 2001 using Kaplan-Meier and Cox proportional hazards method. Among 1485 CLL patients diagnosed from 1970 to 2001, patients in the recent cohort (1985–2001) were diagnosed at a younger age and an earlier stage compared to the earliest cohort (1970–1984). There was a 44% reduction in mortality among patients diagnosed in 1985–1995 compared to those diagnosed in 1970–1984 after adjusting for age, sex and Rai stage among patients who ever received treatment. There was an overall 11 years (5 years for stage 0) loss of life expectancy among 1485 patients compared with the expected life expectancy based on the age-, sex- and race-matched US general population, with a 43% decrease in the 10-year survival rate. Abnormal cytogenetics was associated with shorter progression-free (PF) survival after adjusting for age, sex, Rai stage and beta-2 microglobulin (beta-2M); whereas, older age, abnormal cytogenetics and a higher beta-2M level were adverse predictors for overall survival. No increased risk of second cancer overall was observed, however, patients who received treatment for CLL had an elevated risk of developing AML and HD. Two out of three patients who developed AML were treated with alkylating agents. In conclusion, CLL patients had improved survival over time. The identification of clinical predictors of PF/overall survival has important clinical significance. Close surveillance of the development of second cancer is critical to improve the quality of life of long-term survivors. ^
Resumo:
High rates of overweight and obesity in African American women have been attributed, in part, to poor health habits, such as physical inactivity, and cultural influences on body image perceptions. The purpose of this study was to determine the relationship among body mass index (BMI=kg/m2), body image perception (perceived and desired) and physical activity, both self-reported and objectively measured. Anthropometric measures of BMI and Pulvers' culturally relevant body image, physical activity and demographic data were collected from 249 African American women in Houston. Women ( M = 44.8 yrs, SD = 9.5) were educated (53% college graduates) and were overweight (M = 35.0 kg/m2, SD = 9.2). Less than half of women perceived their weight correctly regardless of their actual weight (p < 0.001). Nearly three-fourths (73.9%) of women who were normal weight desired to be obese, and only 39.4% of women desired to be normal weight, regardless of actual or perceived weight. Women in all weight classes (normal, overweight and obese) varied in objective measures of physical activity (F(2,112) = 4.424, p = .014). Regression analyses showed objectively measured physical activity was significantly associated with BMI ( Beta = -2.45, p < .01) and self-reported walking was significantly associated with perceived BMI (Beta = -.156, p = .017). Results suggest African American women who are smaller want to be larger and African American women who are larger want to be smaller, revealing dichotomous distortion in body images. Low rates of physical activity may be a factor. Research is needed to increase physical activity levels in African American women, leading to improved satisfaction with normal weight as desirable for health and beauty. Supported by NCI (NIH) 1R01CA109403. ^
Resumo:
A cloned nontumorigenic prostatic epithelial cell line, NbE-1.4, isolated from Noble (nbl/crx) rat ventral prostate, was used to examine the potential role of activated myc and neu oncogenes in prostate carcinogenesis. Transfection of SV40 promoter/enhancer driven constructs containing either v-myc, truncated c-myc, or neu-T (activated neu) oncogenes was accomplished using calcium phosphate-mediated DNA transfer. Cells were cotransfected, as necessary, with pSV2neo, allowing for selection of positive clones using the antibiotic geneticin (G418). G418 resistant colonies were pooled in some cases or limiting dilution exclusion cloned in others as described. Transfection of NbE-1.4 cells with activated myc oncogenes resulted only in the partial transformation. These cells display an altered morphology and decreased dependence on serum factors in vitro; however, saturation density, soft agar colony formation and growth assay in male athymic nude mice were all negative. Transfection and overexpression of NbE-1.4 cells with an activated neu oncogene alone resulted in tumorigenic conversion. Cell transformation was evident following an examination of the altered cellular morphology, an increased soft agar colony formation, and an acquisition of a tumorigenic potential when injected s.c. into male athymic nude mice. neu-transformed NbE-1.4 cells displayed elevated activity of the neu receptor tyrosine kinase. Furthermore, qualitative changes in tyrosine phosphorylated proteins were found in neu transformed cell clones. These changes were associated with elevated expression of mRNAs for laminin $\beta$1, $\beta$2, and procollagen type IV. The expression of fibronectin and E-cadherin, which are often lost during tumorigenesis, did not correlate with the tumorigenic phenotype. Therefore, it appears that neu oncogene overexpression has been found to be associated with the transformation of rat prostatic epithelial cells, presumably through alterations in gene expression that regulate extracellular matrix. The possible interrelationship and functional significance between neu oncogene expression and the elevated extracellular matrix gene expression is discussed. ^
Resumo:
The Two State model describes how drugs activate receptors by inducing or supporting a conformational change in the receptor from “off” to “on”. The beta 2 adrenergic receptor system is the model system which was used to formalize the concept of two states, and the mechanism of hormone agonist stimulation of this receptor is similar to ligand activation of other seven transmembrane receptors. Hormone binding to beta 2 adrenergic receptors stimulates the intracellular production of cyclic adenosine monophosphate (cAMP), which is mediated through the stimulatory guanyl nucleotide binding protein (Gs) interacting with the membrane bound enzyme adenylylcyclase (AC). ^ The effects of cAMP include protein phosphorylation, metabolic regulation and transcriptional regulation. The beta 2 adrenergic receptor system is the most well known of its family of G protein coupled receptors. Ligands have been scrutinized extensively in search of more effective therapeutic agents at this receptor as well as for insight into the biochemical mechanism of receptor activation. Hormone binding to receptor is thought to induce a conformational change in the receptor that increases its affinity for inactive Gs, catalyzes the release of GDP and subsequent binding of GTP and activation of Gs. ^ However, some beta 2 ligands are more efficient at this transformation than others, and the underlying mechanism for this drug specificity is not fully understood. The central problem in pharmacology is the characterization of drugs in their effect on physiological systems, and consequently, the search for a rational scale of drug effectiveness has been the effort of many investigators, which continues to the present time as models are proposed, tested and modified. ^ The major results of this thesis show that for many b2 -adrenergic ligands, the Two State model is quite adequate to explain their activity, but dobutamine (+/−3,4-dihydroxy-N-[3-(4-hydroxyphenyl)-1-methylpropyl]- b -phenethylamine) fails to conform to the predictions of the Two State model. It is a weak partial agonist, but it forms a large amount of high affinity complexes, and these complexes are formed at low concentrations much better than at higher concentrations. Finally, dobutamine causes the beta 2 adrenergic receptor to form high affinity complexes at a much faster rate than can be accounted for by its low efficiency activating AC. Because the Two State model fails to predict the activity of dobutamine in three different ways, it has been disproven in its strictest form. ^
Resumo:
9-$\beta$-D-arabinofuranosyl-2-fluoroadenine (F-ara-A) is an analogue of adenosine and 2$\sp\prime$-deoxyadenosine with potent antitumor activity both in vitro and in vivo. The mechanism of action of F-ara-A was evaluated both in whole cells and in experimental systems with purified enzymes. F-ara-A was converted to its 5$\sp\prime$-triphosphate F-ara-ATP in cells and then incorporated into DNA in a self-limiting manner. About 98% of the incorporated F-ara-AMP residues were located at the 3$\sp\prime$-termini of DNA strands, suggesting a chain termination property of this compound. DNA synthesis in CEM cells was inhibited by F-ara-A treatment with an IC$\sb{50}$ value of 1 $\mu$M. Cells were not able to restore the normal level of DNA synthesis even after being cultured in drug-free medium for 40 h. A DNA primer extension assay with M13mp18(+) single-stranded DNA template using purified human DNA polymerases $\alpha$ and further revealed that F-ara-ATP competed with dATP for incorporation into the A sites of the elongating DNA strands. The incorporation of F-ara-AMP into DNA resulted in a termination of DNA synthesis at the incorporated A sites. Pol $\alpha$ and $\delta$ were not able to efficiently extend the DNA primer with F-ara-AMP at its 3$\sp\prime$-end. Furthermore, the presence of F-ara-AMP at the 3$\sp\prime$-end of an oligodeoxyribonucleotide impaired its ligation with an adjacent DNA fragment by human and T4 ligases. Human DNA polymerase $\alpha$ incorporated more F-ara-AMP into DNA than polymerase $\delta$ and was more sensitive to the inhibition by F-ara-ATP, suggesting that polymerase $\alpha$ may be a preferred target for this analogue. On the other hand, DNA-dependent nucleotide turnover experiments and sequencing gel analysis demonstrated that DNA polymerase $\delta$ was able to remove the incorporated F-ara-AMP residue from the 3$\sp\prime$-end of the DNA strand with its 3$\sp\prime$-5$\sp\prime$ exonuclease activity in vitro, subsequently permitting further elongation of the DNA strand.^ The incorporation of F-ara-AMP into DNA was linearly correlated both with the inhibition of DNA synthesis and with the loss of clonogenicity. Termination of DNA synthesis and deletion of genetic material resulted from F-ara-AMP incorporation may be the mechanism responsible for cytotoxicity of F-ara-A. (Abstract shortened with permission of author.) ^
Resumo:
The integrin receptor $\alpha 4\beta 1$ is a cell surface heterodimer involved in a variety of highly regulated cellular interactions. The purpose of this dissertation was to identify and characterize unique structural and functional properties of the $\alpha 4\beta 1$ molecule that may be important for adhesion regulation and signal transduction. To study these properties and to establish a consensus sequence for the $\alpha 4$ subunit, cDNA encoding $\alpha 4$ was cloned and sequenced. A comparison with previously described human $\alpha 4$ sequences identified several substitutions in the $5\prime$ and $3\prime$ untranslated regions, and a nonsynonymous G to A transition in the coding region, resulting in a glutamine substitution for arginine. Further analysis of this single nucleotide substitution indicated that two variants of the $\alpha 4$ subunit exist, and when compared with three ancestrally-related species, the new form cloned in our laboratory was found to be evolutionarily conserved.^ The expression of $\alpha 4$ cDNA in transfected K562 erythroleukemia cells, and subsequent studies using flow cytofluorometric, immunochemical, and ligand binding/blocking analyses, confirmed $\alpha 4\beta 1$ as a receptor for fibronectin (FN) and vascular cell adhesion molecule-1 (VCAM-1), and provided a practical means of identifying two novel monoclonal antibody (mAb) binding epitopes on the $\alpha 4\beta 1$ complex that may play important roles in the regulation of leukocyte adhesion.^ To investigate the association of $\alpha 4\beta 1$-mediated adhesion with signals involved in the spreading of lymphocytes on FN, a quantitative method of analysis was developed using video microscopy and digital imaging. The results showed that HPB-ALL $(\alpha 4\beta 1\sp{\rm hi},\ \alpha 5\beta 1\sp-)$ cells could adhere and actively spread on human plasma FN, but not on control substrate. Many cell types which express different levels of the $\alpha 4\beta 1$ and $\alpha 5\beta 1$ FN binding integrins were examined for their ability to function in these events. Using anti-$\alpha 4$ and anti-$\alpha 5$ mAbs, it was determined that cell adhesion to FN was influenced by both $\beta 1$ integrins, while cell spreading was found to be dependent on the $\alpha 4\beta 1$ complex. In addition, inhibitors of phospholipase A$\sb2$ (PLA$\sb2$), 5-lipoxygenases, and cyclooxygenases blocked HPB-ALL cell spreading, yet had no effect on cell adhesion to FN, and the impaired spreading induced by the PLA$\sb2$ inhibitor cibacron blue was restored by the addition of exogenous arachidonic acid (AA). These results suggest that the interaction of $\alpha 4\beta 1$ with FN, the activation of PLA$\sb2,$ and the subsequent release of AA, may be involved in lymphocyte spreading. ^
Resumo:
Evidence suggests that sex-based differences in immune function may predispose women to numerous hypersensitivity conditions such as Systemic lupus erythematosus (SLE), Hashimoto's thyroiditis and asthma. To date, the exact mechanisms of sexual dimorphism in immunity are not fully characterized but sex hormones such as 17-β estradiol (E2) and progesterone (PR) are believed to be involved. Since E2 and PR may modulate the production of critical regulatory cytokines, we sought to characterize their effects on the in vitro human type-1/type-2 cytokine balance. We hypothesized that E2 and/or PR vary cytokine production and influence costimulatory molecule expression and apoptosis. We first described the effect of E2 and/or PR on type-1 (IFN-γ and IL-12) and type-2 (IL-4 and IL-10) cytokine production by human peripheral blood mononuclear cells (PBMC) treated with various T-lymphocyte and monocyte stimuli. E2 and/or PR were each used at concentrations similar to those found at the maternal-fetal interface during pregnancy. At this dose, E2 increased IFN-γ and IL-12 production and PR decreased IFN-γ production and tended to increase IL-4 production. Furthermore, the combination of E2+PR decreased IL-12 production. This suggests that E2 shifts the type-1/type-2 cytokine balance towards a type-1 response and that PR and E2+PR shift the balance towards a type-2 response. Next, we used intracellular cytokine detection to demonstrate that E2 and/or PR are capable of altering cytokine production of CD3+ T-cells and the CD3+CD4+ and CD3+CD8+ subsets. In addition, we used the H9 T-lymphocyte cell line and the THP-1 monocyte cell line to show that E2 and/or PR can induce cytokine effects in both T-cells and monocytes independent of their interaction. Lastly, we determined the effect of E2 and/or PR on costimulatory molecule expression and apoptosis as potential mechanisms for the cytokine-induced alterations. E2 increased and PR decreased CD80 expression on THP-1 cells and PR and E2+PR decreased CD28 expression in PBMC and Jurkat cells. Furthermore, E2, PR and E2+PR increased Fas-mediated apoptosis in Jurkat cells and E2 increased FasL expression on THP-1 cells. Thus, E2 and/or PR may alter the cytokine balance by modulating the CD28/CD80 costimulatory pathway and apoptosis. ^
Resumo:
Lysophosphatidic acid (LPA) is a bioactive phospholipid and binds to its receptors, a family of G protein-coupled receptors (GPCR), which initiates multiple signaling cascades and leads to activation of several transcription factors, including NF-κB. NF-κB critically regulates numerous gene expressions, and is persistently active in many diseases. In our previous studies, we have demonstrated that LPA-induced NF-κB activation is dependent on a novel scaffold protein, CARMA3. However, how CARMA3 is recruited to receptor remains unknown. β-Arrestins are a family of proteins involved in desensitization of GPCR signaling. Additionally, β-arrestins function as signaling adaptor proteins, and mediate multiple signaling pathways. Therefore, we have hypothesized that β-arrestins may link CARMA3 to LPA receptors, and facilitate LPA-induced NF-κB activation. ^ Using β-arrestin-deficient MEFs, we found that β-arrestin 2, but not β-arrestin 1, was required for LPA-induced NF-κB activation. Also, we showed that the expression of NF-κB-dependent cytokines, such as interlukin-6, was impaired in β-arrestin 2-deficient MEFs. Mechanistically, we demonstrated the inducible association of endogenous β-arrestin 2 and CARMA3, and we found the CARD domain of CARMA3 interacted with 60-320 residues of β-arrestin 2. To understand why β-arrestin 2, but not β-arrestin 1, mediated NF-κB activation, we generated β-arrestin mutants. However, some mutants degraded quickly, and the rest did not rescue NF-κB activation in β-arrestin-deficient MEFs, though they had similar binding affinities with CARMA3. Therefore, it indicates that slight changes in residues may determine the different functions of β-arrestins. Moreover, we found β-arrestin 2 deficiency impaired LPA-induced IKK kinase activity, while it did not affect LPA-induced IKKα/β phosphorylation. ^ In summary, our results provide the genetic evidence that β-arrestin 2 serves as a positive regulator in NF-κB signaling pathway by connecting CARMA3 to LPA receptors. Additionally, we demonstrate that β-arrestin 2 is required for IKKα/β activation, but not for the inducible phosphorylation of IKKα/β. Because the signaling pathways around the membrane-proximal region of LPA receptors and GPCRs are quite conserved, our results also suggest a possible link between other GPCRs and CARMA3-mediated NF-κB activation. To fully define the role of β-arrestins in LPA-induced NF-κB signaling pathways will help to identify new drug targets for clinical therapeutics.^