2 resultados para benign tumor

em DigitalCommons@The Texas Medical Center


Relevância:

30.00% 30.00%

Publicador:

Resumo:

15-Lipoxygenase 2 (15-LOX2) is a recently cloned human lipoxygenase that shows tissue-restricted expression in prostate, lung, skin, and cornea. The protein level and enzymatic activity of 15-LOX2 have been shown to be down-regulated in prostate cancers compared with normal and benign prostate tissues. We report the cloning and functional characterization of 15-LOX2 and its three splice variants (termed 15-LOX2sv-a, 15-LOX2sv-b, and 15-LOX2sv-c) from primary prostate epithelial (NHP) cells. Western blotting with multiple NHP cell strains and prostate cancer (PCa) cell lines reveals that the expression of 15-LOX2 is lost in all PCa cell lines, accompanied by decreased enzymatic activity. 15-LOX2 is expressed at multiple subcellular locations, including cytoplasm, cytoskeleton, cell-cell border, and nucleus. Surprisingly, the three splice variants of 15-LOX2 are mostly excluded from the nucleus. To elucidate the relationship between nuclear localization, enzymatic activity, and tumor suppressive functions, we established PCa cell clones stably expressing 15-LOX2 or 15-LOX2sv-b. The 15-LOX2 clones express 15-LOX2 in the nuclei and possess robust enzymatic activity, whereas 15-LOX2sv-b clones show neither nuclear protein localization nor arachidonic acid-metabolizing activity. Interestingly, both 15-LOX2- and 15-LOX2sv-b-stable clones proliferate much slower in vitro when compared with control clones. When orthotopically implanted in nude mouse prostate, both 15-LOX2 and 15-LOX2sv-b suppress PC3 tumor growth in vivo. Finally, cultured NHP cells lose the expression of putative stem/progenitor cell markers, slow down in proliferation, and enter senescence. Several pieces of evidence implicate 15-LOX2 plays a role in replicative senescence of NHP cells: (1) promoter activity and the mRNA and protein levels of 15-LOX2 and its splice variants are upregulated in serially passaged NHP cells, which precede replicative senescence and occur in a cell-autonomous manner; (2) PCa cells stably expressing 15-LOX2 or 15-LOX2sv-b show a passage-related senescence-like phenotype; (3) enforced expression of 15-LOX2 or 15-LOX2sv-b in young NHP cells induce partial cell-cycle arrest and senescence-like phenotypes. Together, these results suggest that 15-LOX2 suppress prostate tumor development and do not necessarily depend on arachidonic acid-metabolizing activity and nuclear localization. Also, 15-LOX2 may serve as an endogenous prostate senescence gene and its tumor-suppressing functions might be associated with its ability to induce cell senescence. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

HUMAN ENDOGENOUS RETROVIRUS K AS A NOVEL TUMOR-ASSOCIATED ANTIGEN FOR DEVELOPMENT OF AN OVARIAN CANCER VACCINE Publication No.________Kiera Rycaj, B.S.Supervisory Professor: Feng Wang-Johanning, Ph.D., M.D. Ovarian cancer (OC) is the fourth most common cancer in women, and the most lethal gynecologic malignancy in the United States. Adequate screening methodologies are currently lacking and most women first present with either stage III or IV disease. To date, there has been no substantial decrease in death rates and the majorities of patients relapse and die from their disease despite response to first-line therapy. Several proteins, such as CA-125, are elevated in OC, but none has proven specific and sensitive enough to serve as a screening tool or for tumor cell recognition and lysis. It has been proposed that human endogenous retrovirus sequences (HERVs) may play a role in the etiology of certain cancers. In a previous study, we showed that HERV-K envelope (env) proteins are widely expressed in human invasive breast cancer (BC) and ductal carcinoma in situ (DCIS), and elicit both serologic and cell-mediated immune responses in BC patients. We also reported the expression of multiple HERV genes and proteins in OC cell lines and tissues. In this study, we strengthened our previous data by determining that HERV-K env mRNAs are expressed in 69% of primary OC tissues (n=29), but in only 24% of benign tissues (N=17). Immmunohistochemistry (IHC) staining revealed HERV-Kpositivecancer cells detected in endometrioid adenocarcinoma and serous adenocarcinoma but not in benign cyst or normal epithelium biopsies. Immunofluorescence staining (IFS) showed greater cell surface expression of HERV-K in OC samples compared to adjacent uninvolved samples. Enzyme-linked immunosorbent assay (ELISA) data confirmed that a humoral immune response is elicited against HERV-K in OC patients. T-cell responses against HERV-K in lymphocytes from OC patients stimulated with autologous HERV-K pulsed dendritic cells included induction of T-cell proliferation and IFN-γ production. HERV-K–specific cytolytic T cells induced greater specific lysis of OC target cells compared to benign and adjacent uninvolved target cells. Finally, upon T regulatory cell (T-reg) depletion, 64% of OC patients displayed an increase in the specific lysis of target cells expressing HERV-K env protein. These findings suggest that HERV-K env protein is a tumor-associated antigen capable of activating both T-cell and B-cell responses in OC patients, and has great potential in the development of immunotherapy regimens against OC.