2 resultados para bacterial recovery
em DigitalCommons@The Texas Medical Center
Resumo:
Hot foods served in foodservice establishments, institutions and homes, have always been regarded as safe, since cooking temperatures are more likely to kill the bacterial agents that may cause foodborne diseases. However, foods that are otherwise served hot have been epidemiologically incriminated for causing foodborne diseases. This situation arises due to the possible post-cooking food contamination. Post-cooking contamination of hot-held food is most threatening for it gives the contaminating agents the possibility of proliferation. On one hand, post-cooking contamination is least understood and on the other, hot-holding of food gives the consumer a false sense of freedom from foodborne diseases. In this study, the dynamics of food contamination before or after cooking and during hot-holding are discussed and a food contamination dynamics model is presented.^ The literature on foodborne cholera, cholera-like diarrhea, shigellosis and E. coli gastroenteritis together with the literature on the occurrence and growth of the causative enteropathogens; 01 V. cholerae, non-01 V. cholerae, S. sonnei, S. flexneri and E. coli were reviewed. The literature on the infective doses of these organisms were also cited.^ In the study, four cooked food types held hot at 40-60(DEGREES)C were deliberately contaminated with 01 V. cholerae, non-01 V. cholerae, S. sonnei, S. flexneri and E. coli, one at a time at each of the hot-holding temperatures. Tested food samples for the recovery of these enteropathogens were withdrawn at various time intervals of hot holding.^ The results showed bacterial recovery to decline with increasing temperature and with increasing hot-holding time within each holding temperature. All the bacterial types except V. cholerae were recovered even after holding the food at 60(DEGREES)C for one hour. V. cholerae was not recovered after hot-holding the food at 50-60(DEGREES)C at certain holding periods. After 48 hrs incubation, V. cholerae was recovered on TCBS agar plates that read negative after the initial 24 hrs of incubation. Effective hot-holding temperatures were determined for each of the food types contaminated by each of the bacterial types.^ Statistical analysis of the collected data showed temperature, bacterial type and their interaction to be significant in enteropathogen recovery. Food type and its interactions with temperature and bacterial type were found not significant. ^
Resumo:
Bacterial pathogens such as enterotoxigenic Escherichia coli, Salmonella, and Campylobacter spp. are associated with up to 80% of diarrheal illness to travelers from developed countries to developing countries. In order to study acute gastrointestinal diseases, researchers from developed countries such as the United States rely on transporting clinical specimens from the developing countries to laboratories in the U.S. in transport media systems. There are few commercially available transport media systems cited in the literature or designated by transport system manufacturers for the transport of enteric bacteria. Therefore a laboratory-based study was conducted to assess three commercial available transport media systems, two gel swabs and one liquid vial, to determine the most appropriate for the maintenance and recovery of common enteric bacterial pathogens. A total of 13 bacterial enteropathogens were recovered from 25°C and 4°C storage temperatures at time points up to 21 days. The results demonstrated that the gel swab and liquid vial transport systems performed similarly for all isolates at both temperatures. All three transport media systems struggled to maintain the isolates at recoverable concentrations when stored at 4°C and it is recommended that isolates be stored at 25°C in transport media systems. Lastly, swab transport systems are recommend for transport since they are small and easy to pack, resist leakage, and are less expensive than similarly performing liquid vial transport media systems.^