2 resultados para bacteria infections
em DigitalCommons@The Texas Medical Center
Resumo:
Musculoskeletal infections are infections of the bone and surrounding tissues. They are currently diagnosed based on culture analysis, which is the gold standard for pathogen identification. However, these clinical laboratory methods are frequently inadequate for the identification of the causative agents, because a large percentage (25-50%) of confirmed musculoskeletal infections are false negatives in which no pathogen is identified in culture. My data supports these results. The goal of this project was to use PCR amplification of a portion of the 16S rRNA gene to test an alternative approach for the identification of these pathogens and to assess the diversity of the bacteria involved. The advantages of this alternative method are that it should increase sample sensitivity and the speed of detection. In addition, bacteria that are non-culturable or in low abundance can be detected using this molecular technique. However, a complication of this approach is that the majority of musculoskeletal infections are polymicrobial, which prohibits direct identification from the infected tissue by DNA sequencing of the initial 16S rDNA amplification products. One way to solve this problem is to use denaturing gradient gel electrophoresis (DGGE) to separate the PCR products before DNA sequencing. Denaturing gradient gel electrophoresis (DGGE) separates DNA molecules based on their melting point, which is determined by their DNA sequence. This analytical technique allows a mixture of PCR products of the same length that electrophoreses through agarose gels as one band, to be separated into different bands and then used for DNA sequence analysis. In this way, the DGGE allows for the identification of individual bacterial species in polymicrobial-infected tissue, which is critical for improving clinical outcomes. By combining the 16S rDNA amplification and the DGGE techniques together, an alternative approach for identification has been used. The 16S rRNA gene PCR-DGGE method includes several critical steps: DNA extraction from tissue biopsies, amplification of the bacterial DNA, PCR product separation by DGGE, amplification of the gel-extracted DNA, and DNA sequencing and analysis. Each step of the method was optimized to increase its sensitivity and for rapid detection of the bacteria present in human tissue samples. The limit of detection for the DNA extraction from tissue was at least 20 Staphylococcus aureus cells and the limit of detection for PCR was at least 0.05 pg of template DNA. The conditions for DGGE electrophoreses were optimized by using a double gradient of acrylamide (6 – 10%) and denaturant (30-70%), which increased the separation between distinct PCR products. The use of GelRed (Biotium) improved the DNA visualization in the DGGE gel. To recover the DNA from the DGGE gels the gel slices were excised, shredded in a bead beater, and the DNA was allowed to diffuse into sterile water overnight. The use of primers containing specific linkers allowed the entire amplified PCR product to be sequenced and then analyzed. The optimized 16S rRNA gene PCR-DGGE method was used to analyze 50 tissue biopsy samples chosen randomly from our collection. The results were compared to those of the Memorial Hermann Hospital Clinical Microbiology Laboratory for the same samples. The molecular method was congruent for 10 of the 17 (59%) culture negative tissue samples. In 7 of the 17 (41%) culture negative the molecular method identified a bacterium. The molecular method was congruent with the culture identification for 7 of the 33 (21%) positive cultured tissue samples. However, in 8 of the 33 (24%) the molecular method identified more organisms. In 13 of the 15 (87%) polymicrobial cultured tissue samples the molecular method identified at least one organism that was also identified by culture techniques. Overall, the DGGE analysis of 16S rDNA is an effective method to identify bacteria not identified by culture analysis.
Resumo:
Background. The number of infections of cardiac implantable electronic devices (CIED) continues to escalate out of proportion to the increase rate of device implantation. Staphylococcal organisms account for 70% to 90% of all CIED infections. However, little is known about non-staphylococcal infections, which have been described only in case reports, small case series or combined in larger studies with staphylococcal CIED infections, thereby diluting their individual impact. ^ Methods. A retrospective review of hospital records of patients admitted with a CIED-related infections were identified within four academic hospitals in Houston, Texas between 2002 and 2009. ^ Results. Of the 504 identified patients with CIED-related infection, 80 (16%) had a non-staphylococcal infection and were the focus of this study. Although the demographics and comorbities of subjects were comparable to other reports, our study illustrates many key points: (a) the microbiologic diversity of non-staphylococcal infections was rather extensive, as it included other Gram-positive bacteria like streptococci and enterococci, a variety of Gram-negative bacteria, atypical bacteria including Nocardia and Mycobacteria, and fungi like Candida and Aspergillus; (b) the duration of CIED insertion prior to non-staphylococcal infection was relatively prolong (mean, 109 ± 27 weeks), of these 44% had their device previously manipulated within a mean of 29.5 ± 6 weeks; (c) non-staphylococcal organisms appear to be less virulent, cause prolonged clinical symptoms prior to admission (mean, 48 ± 12.8 days), and are associated with a lower mortality (4%) than staphylococcal organisms; (d) thirteen patients (16%) presented with CIED-related endocarditis; (e) although not described in prior reports, we identified 3 definite and 2 suspected cases of secondary Gram-negative bacteremia seeding of the CIED; and (f) inappropriate antimicrobial coverage was provided in approximately 50% of patients with non-staphylococcal infections for a mean period of 2.1 days. ^ Conclusions. Non-staphylococcal CIED-related infections are prevalent and diverse with a relatively low virulence and mortality rate. Since non-staphylococcal organisms are capable of secondarily seeding the CIED, a high suspicion for CIED-related infection is warranted in patients with bloodstream infection. Additionally, in patients with suspected CIED infection, adequate Gram positive and -negative antibacterial coverage should be administered until microbiologic data become available.^